Matches in SemOpenAlex for { <https://semopenalex.org/work/W4297200499> ?p ?o ?g. }
Showing items 1 to 80 of
80
with 100 items per page.
- W4297200499 endingPage "125023" @default.
- W4297200499 startingPage "125023" @default.
- W4297200499 abstract "A large-scale energy emergency production plan driven by extreme events in energy supply chain networks is the low-probability/high-consequence event that is difficult to prepare. One of the most prominent challenges is efficiently computing the equilibrium point characterized with more frequently involved in common resource conflicts due to different player behaviors in energy supply chain networks. In this paper, a novel large-scale equilibrium model of energy emergency production: embedding social choice rules into Nash Q-learning automatically achieving consensus of urgent recovery behaviors, is proposed to tackle this challenge. The main contributions of this work are that firstly set up a large-scale equilibrium model of energy emergency production to formulate energy emergency production plans by modifying the large-scale energy equilibrium model, and the computational limitations of Generalized Nash Equilibrium are overcame by combination of Nash Q-learning methods and individuals’ preferences reaching a collective decision which guarantees uniqueness of the large-scale Nash equilibrium to achieve both system-level efficiency and maximum fairness. Simulations results show that the generalized Nash bargaining solution can be implemented by the proposed large-scale equilibrium model of energy emergency production, in which outcome of the game is the emergency production stable equilibria alternative with no chance moves in a given consensus level, and compared with the existing techniques considering non-cooperative behaviors, it has a significantly lower minimisation of time for the energy restoration by twenty-nine percent, and reduces minimisation of cost for the energy restoration by seventeen percent and minimisation of carbon dioxide emissions by twenty-three percent with disaster recovery." @default.
- W4297200499 created "2022-09-27" @default.
- W4297200499 creator A5065091757 @default.
- W4297200499 date "2022-11-01" @default.
- W4297200499 modified "2023-10-18" @default.
- W4297200499 title "A large-scale equilibrium model of energy emergency production: Embedding social choice rules into Nash Q-learning automatically achieving consensus of urgent recovery behaviors" @default.
- W4297200499 cites W1975882892 @default.
- W4297200499 cites W1981926996 @default.
- W4297200499 cites W2022185333 @default.
- W4297200499 cites W2033302778 @default.
- W4297200499 cites W2056362484 @default.
- W4297200499 cites W2060617964 @default.
- W4297200499 cites W2076199148 @default.
- W4297200499 cites W2080892693 @default.
- W4297200499 cites W2092474870 @default.
- W4297200499 cites W2214884926 @default.
- W4297200499 cites W2265803091 @default.
- W4297200499 cites W2559301422 @default.
- W4297200499 cites W2783273546 @default.
- W4297200499 cites W2793013392 @default.
- W4297200499 cites W2884957391 @default.
- W4297200499 cites W2898829954 @default.
- W4297200499 cites W2902385229 @default.
- W4297200499 cites W2941568898 @default.
- W4297200499 cites W2947205530 @default.
- W4297200499 cites W2963738459 @default.
- W4297200499 cites W3003930742 @default.
- W4297200499 cites W3010191170 @default.
- W4297200499 cites W3039674353 @default.
- W4297200499 cites W3084760504 @default.
- W4297200499 cites W3135522831 @default.
- W4297200499 cites W3154709018 @default.
- W4297200499 cites W3176421108 @default.
- W4297200499 cites W3177842940 @default.
- W4297200499 cites W4210755057 @default.
- W4297200499 cites W4210797425 @default.
- W4297200499 cites W4220953011 @default.
- W4297200499 cites W2057251426 @default.
- W4297200499 doi "https://doi.org/10.1016/j.energy.2022.125023" @default.
- W4297200499 hasPublicationYear "2022" @default.
- W4297200499 type Work @default.
- W4297200499 citedByCount "1" @default.
- W4297200499 countsByYear W42972004992023 @default.
- W4297200499 crossrefType "journal-article" @default.
- W4297200499 hasAuthorship W4297200499A5065091757 @default.
- W4297200499 hasConcept C126255220 @default.
- W4297200499 hasConcept C144237770 @default.
- W4297200499 hasConcept C162324750 @default.
- W4297200499 hasConcept C177142836 @default.
- W4297200499 hasConcept C33923547 @default.
- W4297200499 hasConcept C41008148 @default.
- W4297200499 hasConcept C46814582 @default.
- W4297200499 hasConcept C90376892 @default.
- W4297200499 hasConceptScore W4297200499C126255220 @default.
- W4297200499 hasConceptScore W4297200499C144237770 @default.
- W4297200499 hasConceptScore W4297200499C162324750 @default.
- W4297200499 hasConceptScore W4297200499C177142836 @default.
- W4297200499 hasConceptScore W4297200499C33923547 @default.
- W4297200499 hasConceptScore W4297200499C41008148 @default.
- W4297200499 hasConceptScore W4297200499C46814582 @default.
- W4297200499 hasConceptScore W4297200499C90376892 @default.
- W4297200499 hasLocation W42972004991 @default.
- W4297200499 hasOpenAccess W4297200499 @default.
- W4297200499 hasPrimaryLocation W42972004991 @default.
- W4297200499 hasRelatedWork W1571759513 @default.
- W4297200499 hasRelatedWork W1595197680 @default.
- W4297200499 hasRelatedWork W2128234684 @default.
- W4297200499 hasRelatedWork W2231684388 @default.
- W4297200499 hasRelatedWork W2372970938 @default.
- W4297200499 hasRelatedWork W3035674589 @default.
- W4297200499 hasRelatedWork W4213040094 @default.
- W4297200499 hasRelatedWork W4213304398 @default.
- W4297200499 hasRelatedWork W4285518567 @default.
- W4297200499 hasRelatedWork W2152637167 @default.
- W4297200499 hasVolume "259" @default.
- W4297200499 isParatext "false" @default.
- W4297200499 isRetracted "false" @default.
- W4297200499 workType "article" @default.