Matches in SemOpenAlex for { <https://semopenalex.org/work/W4297200530> ?p ?o ?g. }
- W4297200530 endingPage "360" @default.
- W4297200530 startingPage "341" @default.
- W4297200530 abstract "Despite the tremendous theranostics potential of nano-scale drug delivery system (NDDS) in oncology field, their tumor-targeting efficiency and safety remain major challenges due to their proneness of off-target accumulation through widespread vascular endothelial gaps (up to 1 μm). To address this problem, in this research, micro-sized cellular platelet ghosts (PGs, 1.32 μm, platelet without inner granules and coagulation) were employed as carriers to ship hollow gold nanoparticles (HGNs, 58.7 nm), forming a hierarchical biosafe system (PG@HGNs) to reduce normal tissue interception and enhance tumor targeting delivery of HGNs for improved photothermal therapy. PGs were prepared by an optimized swelling-extrusion-elution method, HGNs were loaded in PGs (PG@HGNs) through a hypotonic dialysis method and the safety and biodistribution of the system was evaluated in vitro and in vivo. In in vitro condition that stimulated the tumoral vessel acidic microenvironment (pH = 6.5), PG@HGNs were demonstrated with enhanced membrane fluidity through down-regulation of the glycoprotein Ib expressed on the PGs. This change induced a burst release of nano-sized HGNs which were capable to traverse vascular endothelium layer on a tumor-endothelial cell transwell model, whilst the micro-sized PG carriers were intercepted. In comparison to nano-sized platelet membrane-coated carriers (PM@HGNs), PG@HGNs showed enhanced internalization and cytotoxicity to 4T1 cells. In animal models, PG@HGNs remarkably prolonged circulation most likely due to the presence of self-recognition receptor-CD47 of PGs, and effectively reduced normal tissue interception via the micro-scale size effect. These both contributed to the significantly improved tumor targeting efficiency of HGNs. PG@HGNs generated the greater antitumor photothermal efficacy alongside safety in the animals compared to PM@HGNs. Collectively, this study demonstrated the potential of the micro-scale PGs equipped with adjusted membrane GP Ib as biosafe vehicles for HGNs or possibly other nanodrugs. THE STATEMENT OF SIGNIFICANCE: Despite the tremendous theranostics potentials, the safety and tumor-targeting efficiency of nano-scale drug delivery systems (NDDS) are compromised by their undesirable accumulation in normal tissues with widespread vascular endothelial gaps, such as many tumor-targeted NDDSs still accumulated much in liver and/or spleen. Herein, we explored a micro-nano biomimetic cascade delivery system to address the above drawbacks. By forming a hierarchical biosafe system, micro-sized platelet ghost (PGs, 1.32 μm) was employed as tumor-targeted delivery carrier to transport hollow gold nanoparticles (HGNs, 58.7 nm). It was demonstrated that this micro-size system could maintain platelet membrane structure thus prolong in vivo circulation, while avoiding extravasation into normal tissues. PG@HGNs could sensitively respond to the acidic microenvironment near tumor vessel via down-regulation of glycoprotein Ib and rapidly release nano-bullets-HGNs to further penetrate into the tumor tissues through EPR effect, thus enhancing photothermal efficacy generated by HGNs under NIR irradiation. Collectively, the micro-scaled PGs could be biosafe vehicles for improved tumor-targeted delivery of HGNs or possibly other nanodrugs." @default.
- W4297200530 created "2022-09-27" @default.
- W4297200530 creator A5000238995 @default.
- W4297200530 creator A5000963442 @default.
- W4297200530 creator A5007953627 @default.
- W4297200530 creator A5010411226 @default.
- W4297200530 creator A5028849126 @default.
- W4297200530 creator A5042739869 @default.
- W4297200530 creator A5054049125 @default.
- W4297200530 creator A5057292712 @default.
- W4297200530 creator A5059348394 @default.
- W4297200530 creator A5086360069 @default.
- W4297200530 date "2022-11-01" @default.
- W4297200530 modified "2023-09-28" @default.
- W4297200530 title "Glycoprotein Ib-regulated micro platelet ghost for biosafe distribution and photothermal oncotherapy" @default.
- W4297200530 cites W1829229940 @default.
- W4297200530 cites W1871753595 @default.
- W4297200530 cites W1977153597 @default.
- W4297200530 cites W2064147162 @default.
- W4297200530 cites W2072792448 @default.
- W4297200530 cites W2081514771 @default.
- W4297200530 cites W2090080882 @default.
- W4297200530 cites W2125236267 @default.
- W4297200530 cites W2127785900 @default.
- W4297200530 cites W2313248184 @default.
- W4297200530 cites W2314906766 @default.
- W4297200530 cites W2409932367 @default.
- W4297200530 cites W2518753082 @default.
- W4297200530 cites W2546501267 @default.
- W4297200530 cites W2589121907 @default.
- W4297200530 cites W2626252985 @default.
- W4297200530 cites W2751632089 @default.
- W4297200530 cites W2771272215 @default.
- W4297200530 cites W2780622257 @default.
- W4297200530 cites W2795755855 @default.
- W4297200530 cites W2894042159 @default.
- W4297200530 cites W2908130110 @default.
- W4297200530 cites W2934623941 @default.
- W4297200530 cites W2947885335 @default.
- W4297200530 cites W2953291509 @default.
- W4297200530 cites W2965732658 @default.
- W4297200530 cites W2983828772 @default.
- W4297200530 cites W2995594756 @default.
- W4297200530 cites W3016598551 @default.
- W4297200530 cites W3025774607 @default.
- W4297200530 cites W3042635660 @default.
- W4297200530 cites W3048248898 @default.
- W4297200530 cites W3080176195 @default.
- W4297200530 cites W3086659331 @default.
- W4297200530 cites W3088056115 @default.
- W4297200530 cites W3101502585 @default.
- W4297200530 cites W3124868122 @default.
- W4297200530 cites W3132652259 @default.
- W4297200530 cites W3132743745 @default.
- W4297200530 cites W3137579209 @default.
- W4297200530 cites W3138174475 @default.
- W4297200530 cites W3155774973 @default.
- W4297200530 cites W3162463107 @default.
- W4297200530 cites W3163153503 @default.
- W4297200530 cites W3168135583 @default.
- W4297200530 cites W3174358536 @default.
- W4297200530 cites W4248055233 @default.
- W4297200530 doi "https://doi.org/10.1016/j.jconrel.2022.09.036" @default.
- W4297200530 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36152806" @default.
- W4297200530 hasPublicationYear "2022" @default.
- W4297200530 type Work @default.
- W4297200530 citedByCount "4" @default.
- W4297200530 countsByYear W42972005302023 @default.
- W4297200530 crossrefType "journal-article" @default.
- W4297200530 hasAuthorship W4297200530A5000238995 @default.
- W4297200530 hasAuthorship W4297200530A5000963442 @default.
- W4297200530 hasAuthorship W4297200530A5007953627 @default.
- W4297200530 hasAuthorship W4297200530A5010411226 @default.
- W4297200530 hasAuthorship W4297200530A5028849126 @default.
- W4297200530 hasAuthorship W4297200530A5042739869 @default.
- W4297200530 hasAuthorship W4297200530A5054049125 @default.
- W4297200530 hasAuthorship W4297200530A5057292712 @default.
- W4297200530 hasAuthorship W4297200530A5059348394 @default.
- W4297200530 hasAuthorship W4297200530A5086360069 @default.
- W4297200530 hasConcept C12554922 @default.
- W4297200530 hasConcept C171250308 @default.
- W4297200530 hasConcept C182606246 @default.
- W4297200530 hasConcept C185592680 @default.
- W4297200530 hasConcept C192562407 @default.
- W4297200530 hasConcept C202751555 @default.
- W4297200530 hasConcept C203014093 @default.
- W4297200530 hasConcept C3018697912 @default.
- W4297200530 hasConcept C55493867 @default.
- W4297200530 hasConcept C86803240 @default.
- W4297200530 hasConcept C89560881 @default.
- W4297200530 hasConcept C95444343 @default.
- W4297200530 hasConceptScore W4297200530C12554922 @default.
- W4297200530 hasConceptScore W4297200530C171250308 @default.
- W4297200530 hasConceptScore W4297200530C182606246 @default.
- W4297200530 hasConceptScore W4297200530C185592680 @default.
- W4297200530 hasConceptScore W4297200530C192562407 @default.
- W4297200530 hasConceptScore W4297200530C202751555 @default.
- W4297200530 hasConceptScore W4297200530C203014093 @default.