Matches in SemOpenAlex for { <https://semopenalex.org/work/W4297201259> ?p ?o ?g. }
- W4297201259 endingPage "846" @default.
- W4297201259 startingPage "846" @default.
- W4297201259 abstract "Current state-of-the-art engine condition monitoring is based on a minimum of one steady-state data point per flight. Due to the scarcity of available data points, there are difficulties distinguishing between random scatter and an underlying fault introducing a detection latency of several flights. Today’s increased availability of data acquisition hardware in modern aircraft provides continuously sampled in-flight measurements, so-called full-flight data. These full-flight data give access to sufficient data points to detect faults within a single flight, significantly improving the availability and safety of aircraft. Artificial neural networks are considered well suited for the timely analysis of an extensive amount of incoming data. This article proposes uncertainty quantification for artificial neural networks, leading to more reliable and robust fault detection. An existing approach for approximating the aleatoric uncertainty was extended by an Out-of-Distribution Detection in order to take the epistemic uncertainty into account. The method was statistically evaluated, and a grid search was performed to evaluate optimal parameter combinations maximizing the true positive detection rates. All test cases were derived based on in-flight measurements of a commercially operated regional jet. Especially when requiring low false positive detection rates, the true positive detections could be improved 2.8 times while improving response times by approximately 6.9 compared to methods only accounting for the aleatoric uncertainty." @default.
- W4297201259 created "2022-09-27" @default.
- W4297201259 creator A5019573724 @default.
- W4297201259 creator A5020298161 @default.
- W4297201259 creator A5026843237 @default.
- W4297201259 creator A5069942417 @default.
- W4297201259 creator A5091148846 @default.
- W4297201259 date "2022-09-23" @default.
- W4297201259 modified "2023-09-25" @default.
- W4297201259 title "Uncertainty Quantification for Full-Flight Data Based Engine Fault Detection with Neural Networks" @default.
- W4297201259 cites W1521079860 @default.
- W4297201259 cites W1995730407 @default.
- W4297201259 cites W1998031548 @default.
- W4297201259 cites W2064675550 @default.
- W4297201259 cites W2072857564 @default.
- W4297201259 cites W2142261240 @default.
- W4297201259 cites W2157331557 @default.
- W4297201259 cites W2160805924 @default.
- W4297201259 cites W2164405215 @default.
- W4297201259 cites W2481157416 @default.
- W4297201259 cites W2592325411 @default.
- W4297201259 cites W2622452944 @default.
- W4297201259 cites W2765609047 @default.
- W4297201259 cites W2888959574 @default.
- W4297201259 cites W2889118267 @default.
- W4297201259 cites W2901727196 @default.
- W4297201259 cites W2962686212 @default.
- W4297201259 cites W2968338320 @default.
- W4297201259 cites W2997960816 @default.
- W4297201259 cites W3115991469 @default.
- W4297201259 cites W3134774296 @default.
- W4297201259 cites W3195911323 @default.
- W4297201259 cites W4200060635 @default.
- W4297201259 cites W4200400443 @default.
- W4297201259 cites W4213374696 @default.
- W4297201259 cites W4226536463 @default.
- W4297201259 cites W4240338048 @default.
- W4297201259 cites W4299733614 @default.
- W4297201259 doi "https://doi.org/10.3390/machines10100846" @default.
- W4297201259 hasPublicationYear "2022" @default.
- W4297201259 type Work @default.
- W4297201259 citedByCount "1" @default.
- W4297201259 countsByYear W42972012592023 @default.
- W4297201259 crossrefType "journal-article" @default.
- W4297201259 hasAuthorship W4297201259A5019573724 @default.
- W4297201259 hasAuthorship W4297201259A5020298161 @default.
- W4297201259 hasAuthorship W4297201259A5026843237 @default.
- W4297201259 hasAuthorship W4297201259A5069942417 @default.
- W4297201259 hasAuthorship W4297201259A5091148846 @default.
- W4297201259 hasBestOaLocation W42972012591 @default.
- W4297201259 hasConcept C119857082 @default.
- W4297201259 hasConcept C124101348 @default.
- W4297201259 hasConcept C127313418 @default.
- W4297201259 hasConcept C127413603 @default.
- W4297201259 hasConcept C146978453 @default.
- W4297201259 hasConcept C152745839 @default.
- W4297201259 hasConcept C154945302 @default.
- W4297201259 hasConcept C165205528 @default.
- W4297201259 hasConcept C172707124 @default.
- W4297201259 hasConcept C175551986 @default.
- W4297201259 hasConcept C200601418 @default.
- W4297201259 hasConcept C32230216 @default.
- W4297201259 hasConcept C39643299 @default.
- W4297201259 hasConcept C41008148 @default.
- W4297201259 hasConcept C50644808 @default.
- W4297201259 hasConcept C79403827 @default.
- W4297201259 hasConceptScore W4297201259C119857082 @default.
- W4297201259 hasConceptScore W4297201259C124101348 @default.
- W4297201259 hasConceptScore W4297201259C127313418 @default.
- W4297201259 hasConceptScore W4297201259C127413603 @default.
- W4297201259 hasConceptScore W4297201259C146978453 @default.
- W4297201259 hasConceptScore W4297201259C152745839 @default.
- W4297201259 hasConceptScore W4297201259C154945302 @default.
- W4297201259 hasConceptScore W4297201259C165205528 @default.
- W4297201259 hasConceptScore W4297201259C172707124 @default.
- W4297201259 hasConceptScore W4297201259C175551986 @default.
- W4297201259 hasConceptScore W4297201259C200601418 @default.
- W4297201259 hasConceptScore W4297201259C32230216 @default.
- W4297201259 hasConceptScore W4297201259C39643299 @default.
- W4297201259 hasConceptScore W4297201259C41008148 @default.
- W4297201259 hasConceptScore W4297201259C50644808 @default.
- W4297201259 hasConceptScore W4297201259C79403827 @default.
- W4297201259 hasFunder F4320323803 @default.
- W4297201259 hasIssue "10" @default.
- W4297201259 hasLocation W42972012591 @default.
- W4297201259 hasOpenAccess W4297201259 @default.
- W4297201259 hasPrimaryLocation W42972012591 @default.
- W4297201259 hasRelatedWork W1979928167 @default.
- W4297201259 hasRelatedWork W2356557657 @default.
- W4297201259 hasRelatedWork W2365567737 @default.
- W4297201259 hasRelatedWork W2372829958 @default.
- W4297201259 hasRelatedWork W2373962361 @default.
- W4297201259 hasRelatedWork W2376596949 @default.
- W4297201259 hasRelatedWork W2386387936 @default.
- W4297201259 hasRelatedWork W2977657329 @default.
- W4297201259 hasRelatedWork W4283525651 @default.
- W4297201259 hasRelatedWork W1629725936 @default.
- W4297201259 hasVolume "10" @default.