Matches in SemOpenAlex for { <https://semopenalex.org/work/W4297201767> ?p ?o ?g. }
Showing items 1 to 65 of
65
with 100 items per page.
- W4297201767 abstract "We study the problem of dynamic assortment personalization with large, heterogeneous populations and wide arrays of products, and demonstrate the importance of structural priors for effective, efficient large-scale personalization. Assortment personalization is the problem of choosing, for each individual (type), a best assortment of products, ads, or other offerings (items) so as to maximize revenue. This problem is central to revenue management in e-commerce and online advertising where both items and types can number in the millions. We formulate the dynamic assortment personalization problem as a discrete-contextual bandit with $m$ contexts (types) and exponentially many arms (assortments of the $n$ items). We assume that each type's preferences follow a simple parametric model with $n$ parameters. In all, there are $mn$ parameters, and existing literature suggests that order optimal regret scales as $mn$. However, the data required to estimate so many parameters is orders of magnitude larger than the data available in most revenue management applications; and the optimal regret under these models is unacceptably high. In this paper, we impose a natural structure on the problem -- a small latent dimension, or low rank. In the static setting, we show that this model can be efficiently learned from surprisingly few interactions, using a time- and memory-efficient optimization algorithm that converges globally whenever the model is learnable. In the dynamic setting, we show that structure-aware dynamic assortment personalization can have regret that is an order of magnitude smaller than structure-ignorant approaches. We validate our theoretical results empirically." @default.
- W4297201767 created "2022-09-27" @default.
- W4297201767 creator A5036921114 @default.
- W4297201767 creator A5084564811 @default.
- W4297201767 date "2016-10-18" @default.
- W4297201767 modified "2023-09-28" @default.
- W4297201767 title "Dynamic Assortment Personalization in High Dimensions" @default.
- W4297201767 doi "https://doi.org/10.48550/arxiv.1610.05604" @default.
- W4297201767 hasPublicationYear "2016" @default.
- W4297201767 type Work @default.
- W4297201767 citedByCount "0" @default.
- W4297201767 crossrefType "posted-content" @default.
- W4297201767 hasAuthorship W4297201767A5036921114 @default.
- W4297201767 hasAuthorship W4297201767A5084564811 @default.
- W4297201767 hasBestOaLocation W42972017671 @default.
- W4297201767 hasConcept C10138342 @default.
- W4297201767 hasConcept C105795698 @default.
- W4297201767 hasConcept C117251300 @default.
- W4297201767 hasConcept C119857082 @default.
- W4297201767 hasConcept C121955636 @default.
- W4297201767 hasConcept C126255220 @default.
- W4297201767 hasConcept C136764020 @default.
- W4297201767 hasConcept C162324750 @default.
- W4297201767 hasConcept C182306322 @default.
- W4297201767 hasConcept C183003079 @default.
- W4297201767 hasConcept C195487862 @default.
- W4297201767 hasConcept C202444582 @default.
- W4297201767 hasConcept C2781386248 @default.
- W4297201767 hasConcept C33676613 @default.
- W4297201767 hasConcept C33923547 @default.
- W4297201767 hasConcept C41008148 @default.
- W4297201767 hasConcept C50817715 @default.
- W4297201767 hasConceptScore W4297201767C10138342 @default.
- W4297201767 hasConceptScore W4297201767C105795698 @default.
- W4297201767 hasConceptScore W4297201767C117251300 @default.
- W4297201767 hasConceptScore W4297201767C119857082 @default.
- W4297201767 hasConceptScore W4297201767C121955636 @default.
- W4297201767 hasConceptScore W4297201767C126255220 @default.
- W4297201767 hasConceptScore W4297201767C136764020 @default.
- W4297201767 hasConceptScore W4297201767C162324750 @default.
- W4297201767 hasConceptScore W4297201767C182306322 @default.
- W4297201767 hasConceptScore W4297201767C183003079 @default.
- W4297201767 hasConceptScore W4297201767C195487862 @default.
- W4297201767 hasConceptScore W4297201767C202444582 @default.
- W4297201767 hasConceptScore W4297201767C2781386248 @default.
- W4297201767 hasConceptScore W4297201767C33676613 @default.
- W4297201767 hasConceptScore W4297201767C33923547 @default.
- W4297201767 hasConceptScore W4297201767C41008148 @default.
- W4297201767 hasConceptScore W4297201767C50817715 @default.
- W4297201767 hasLocation W42972017671 @default.
- W4297201767 hasOpenAccess W4297201767 @default.
- W4297201767 hasPrimaryLocation W42972017671 @default.
- W4297201767 hasRelatedWork W1963479726 @default.
- W4297201767 hasRelatedWork W2108595774 @default.
- W4297201767 hasRelatedWork W2358037006 @default.
- W4297201767 hasRelatedWork W2375318640 @default.
- W4297201767 hasRelatedWork W2536486196 @default.
- W4297201767 hasRelatedWork W2789748765 @default.
- W4297201767 hasRelatedWork W2808755562 @default.
- W4297201767 hasRelatedWork W2988736322 @default.
- W4297201767 hasRelatedWork W4239939569 @default.
- W4297201767 hasRelatedWork W4288043162 @default.
- W4297201767 isParatext "false" @default.
- W4297201767 isRetracted "false" @default.
- W4297201767 workType "article" @default.