Matches in SemOpenAlex for { <https://semopenalex.org/work/W4297231726> ?p ?o ?g. }
Showing items 1 to 82 of
82
with 100 items per page.
- W4297231726 endingPage "11" @default.
- W4297231726 startingPage "1" @default.
- W4297231726 abstract "In this paper, we proposed an assessment system of forest environmental carrying capacity from many aspects and comprehensively evaluated and predicted the forest environmental carrying capacity of 40 cities in the Yangtze River Delta of China by using the proposed deep learning-based model. In addition, the proposed model is used to dynamically evaluate the comprehensive scores of forest environmental carrying capacity of 34 provinces and cities in China between 2015 and 2020. This paper also has the following contributions: (1) a deeply integrated unidirectional bidirectional LSTM considering the correlation of time series is proposed. The bidirectional LSTM network is used to deal with the backward dependence of input data to prevent the omission of some useful information, which is beneficial to the prediction results. (2) In terms of missing data processing, the Mask layer is added to subtly skip the processing of missing data, which will help to enhance the evaluation results." @default.
- W4297231726 created "2022-09-28" @default.
- W4297231726 creator A5000297333 @default.
- W4297231726 creator A5032852253 @default.
- W4297231726 creator A5046047870 @default.
- W4297231726 creator A5046127517 @default.
- W4297231726 creator A5064854720 @default.
- W4297231726 creator A5072353255 @default.
- W4297231726 date "2022-09-27" @default.
- W4297231726 modified "2023-10-14" @default.
- W4297231726 title "Forest Environmental Carrying Capacity Based on Deep Learning" @default.
- W4297231726 cites W2011918056 @default.
- W4297231726 cites W2037832420 @default.
- W4297231726 cites W2039873596 @default.
- W4297231726 cites W2047103362 @default.
- W4297231726 cites W2064675550 @default.
- W4297231726 cites W2163548178 @default.
- W4297231726 cites W34853085 @default.
- W4297231726 doi "https://doi.org/10.1155/2022/7547645" @default.
- W4297231726 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36203723" @default.
- W4297231726 hasPublicationYear "2022" @default.
- W4297231726 type Work @default.
- W4297231726 citedByCount "1" @default.
- W4297231726 countsByYear W42972317262023 @default.
- W4297231726 crossrefType "journal-article" @default.
- W4297231726 hasAuthorship W4297231726A5000297333 @default.
- W4297231726 hasAuthorship W4297231726A5032852253 @default.
- W4297231726 hasAuthorship W4297231726A5046047870 @default.
- W4297231726 hasAuthorship W4297231726A5046127517 @default.
- W4297231726 hasAuthorship W4297231726A5064854720 @default.
- W4297231726 hasAuthorship W4297231726A5072353255 @default.
- W4297231726 hasBestOaLocation W42972317261 @default.
- W4297231726 hasConcept C103781064 @default.
- W4297231726 hasConcept C108583219 @default.
- W4297231726 hasConcept C119857082 @default.
- W4297231726 hasConcept C124101348 @default.
- W4297231726 hasConcept C154945302 @default.
- W4297231726 hasConcept C166957645 @default.
- W4297231726 hasConcept C169258074 @default.
- W4297231726 hasConcept C18903297 @default.
- W4297231726 hasConcept C191935318 @default.
- W4297231726 hasConcept C205649164 @default.
- W4297231726 hasConcept C2776356880 @default.
- W4297231726 hasConcept C3018003528 @default.
- W4297231726 hasConcept C41008148 @default.
- W4297231726 hasConcept C86803240 @default.
- W4297231726 hasConceptScore W4297231726C103781064 @default.
- W4297231726 hasConceptScore W4297231726C108583219 @default.
- W4297231726 hasConceptScore W4297231726C119857082 @default.
- W4297231726 hasConceptScore W4297231726C124101348 @default.
- W4297231726 hasConceptScore W4297231726C154945302 @default.
- W4297231726 hasConceptScore W4297231726C166957645 @default.
- W4297231726 hasConceptScore W4297231726C169258074 @default.
- W4297231726 hasConceptScore W4297231726C18903297 @default.
- W4297231726 hasConceptScore W4297231726C191935318 @default.
- W4297231726 hasConceptScore W4297231726C205649164 @default.
- W4297231726 hasConceptScore W4297231726C2776356880 @default.
- W4297231726 hasConceptScore W4297231726C3018003528 @default.
- W4297231726 hasConceptScore W4297231726C41008148 @default.
- W4297231726 hasConceptScore W4297231726C86803240 @default.
- W4297231726 hasFunder F4320321001 @default.
- W4297231726 hasLocation W42972317261 @default.
- W4297231726 hasLocation W42972317262 @default.
- W4297231726 hasLocation W42972317263 @default.
- W4297231726 hasOpenAccess W4297231726 @default.
- W4297231726 hasPrimaryLocation W42972317261 @default.
- W4297231726 hasRelatedWork W2968586400 @default.
- W4297231726 hasRelatedWork W3211546796 @default.
- W4297231726 hasRelatedWork W4223564025 @default.
- W4297231726 hasRelatedWork W4223943233 @default.
- W4297231726 hasRelatedWork W4281616679 @default.
- W4297231726 hasRelatedWork W4312200629 @default.
- W4297231726 hasRelatedWork W4360585206 @default.
- W4297231726 hasRelatedWork W4364306694 @default.
- W4297231726 hasRelatedWork W4380075502 @default.
- W4297231726 hasRelatedWork W4380086463 @default.
- W4297231726 hasVolume "2022" @default.
- W4297231726 isParatext "false" @default.
- W4297231726 isRetracted "false" @default.
- W4297231726 workType "article" @default.