Matches in SemOpenAlex for { <https://semopenalex.org/work/W4297235512> ?p ?o ?g. }
- W4297235512 endingPage "53" @default.
- W4297235512 startingPage "40" @default.
- W4297235512 abstract "Purpose We have introduced an artificial intelligence framework, 31P‐SPAWNN, in order to fully analyze phosphorus‐31 (P) magnetic resonance spectra. The flexibility and speed of the technique rival traditional least‐square fitting methods, with the performance of the two approaches, are compared in this work. Theory and Methods Convolutional neural network architectures have been proposed for the analysis and quantification of P‐spectroscopy. The generation of training and test data using a fully parameterized model is presented herein. In vivo unlocalized free induction decay and three‐dimensional P‐magnetic resonance spectroscopy imaging data were acquired from healthy volunteers before being quantified using either 31P‐SPAWNN or traditional least‐square fitting techniques. Results The presented experiment has demonstrated both the reliability and accuracy of 31P‐SPAWNN for estimating metabolite concentrations and spectral parameters. Simulated test data showed improved quantification using 31P‐SPAWNN compared with LCModel. In vivo data analysis revealed higher accuracy at low signal‐to‐noise ratio using 31P‐SPAWNN, yet with equivalent precision. Processing time using 31P‐SPAWNN can be further shortened up to two orders of magnitude. Conclusion The accuracy, reliability, and computational speed of the method open new perspectives for integrating these applications in a clinical setting." @default.
- W4297235512 created "2022-09-28" @default.
- W4297235512 creator A5007816984 @default.
- W4297235512 creator A5013460203 @default.
- W4297235512 creator A5015833030 @default.
- W4297235512 creator A5034721456 @default.
- W4297235512 creator A5050308092 @default.
- W4297235512 creator A5073620993 @default.
- W4297235512 creator A5074341922 @default.
- W4297235512 creator A5053639826 @default.
- W4297235512 date "2022-09-25" @default.
- W4297235512 modified "2023-10-16" @default.
- W4297235512 title "In vivo magnetic resonance 31P‐Spectral Analysis With Neural Networks: 31P‐SPAWNN" @default.
- W4297235512 cites W1590593972 @default.
- W4297235512 cites W1730237872 @default.
- W4297235512 cites W1970516786 @default.
- W4297235512 cites W1973601635 @default.
- W4297235512 cites W1981150679 @default.
- W4297235512 cites W1981741821 @default.
- W4297235512 cites W1997683945 @default.
- W4297235512 cites W2003451199 @default.
- W4297235512 cites W2030444682 @default.
- W4297235512 cites W2038979894 @default.
- W4297235512 cites W2041064605 @default.
- W4297235512 cites W2051607590 @default.
- W4297235512 cites W2052729160 @default.
- W4297235512 cites W2075990344 @default.
- W4297235512 cites W2112796928 @default.
- W4297235512 cites W2163144047 @default.
- W4297235512 cites W2171090291 @default.
- W4297235512 cites W2495859154 @default.
- W4297235512 cites W2549098558 @default.
- W4297235512 cites W2752532133 @default.
- W4297235512 cites W2774320778 @default.
- W4297235512 cites W2789876780 @default.
- W4297235512 cites W2800950215 @default.
- W4297235512 cites W2816189988 @default.
- W4297235512 cites W2908214439 @default.
- W4297235512 cites W2923997689 @default.
- W4297235512 cites W2946147212 @default.
- W4297235512 cites W2963091230 @default.
- W4297235512 cites W2972094198 @default.
- W4297235512 cites W3007743770 @default.
- W4297235512 cites W3009564973 @default.
- W4297235512 cites W3016604291 @default.
- W4297235512 cites W3105282616 @default.
- W4297235512 cites W3120371860 @default.
- W4297235512 cites W3182706339 @default.
- W4297235512 cites W3196571138 @default.
- W4297235512 cites W4200343350 @default.
- W4297235512 cites W4297235512 @default.
- W4297235512 cites W625960433 @default.
- W4297235512 cites W3153201019 @default.
- W4297235512 doi "https://doi.org/10.1002/mrm.29446" @default.
- W4297235512 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36161342" @default.
- W4297235512 hasPublicationYear "2022" @default.
- W4297235512 type Work @default.
- W4297235512 citedByCount "1" @default.
- W4297235512 countsByYear W42972355122022 @default.
- W4297235512 crossrefType "journal-article" @default.
- W4297235512 hasAuthorship W4297235512A5007816984 @default.
- W4297235512 hasAuthorship W4297235512A5013460203 @default.
- W4297235512 hasAuthorship W4297235512A5015833030 @default.
- W4297235512 hasAuthorship W4297235512A5034721456 @default.
- W4297235512 hasAuthorship W4297235512A5050308092 @default.
- W4297235512 hasAuthorship W4297235512A5053639826 @default.
- W4297235512 hasAuthorship W4297235512A5073620993 @default.
- W4297235512 hasAuthorship W4297235512A5074341922 @default.
- W4297235512 hasBestOaLocation W42972355121 @default.
- W4297235512 hasConcept C105795698 @default.
- W4297235512 hasConcept C11413529 @default.
- W4297235512 hasConcept C121332964 @default.
- W4297235512 hasConcept C154945302 @default.
- W4297235512 hasConcept C163258240 @default.
- W4297235512 hasConcept C165464430 @default.
- W4297235512 hasConcept C186060115 @default.
- W4297235512 hasConcept C2780598303 @default.
- W4297235512 hasConcept C33923547 @default.
- W4297235512 hasConcept C41008148 @default.
- W4297235512 hasConcept C43214815 @default.
- W4297235512 hasConcept C46141821 @default.
- W4297235512 hasConcept C50644808 @default.
- W4297235512 hasConcept C62520636 @default.
- W4297235512 hasConcept C81363708 @default.
- W4297235512 hasConcept C86803240 @default.
- W4297235512 hasConceptScore W4297235512C105795698 @default.
- W4297235512 hasConceptScore W4297235512C11413529 @default.
- W4297235512 hasConceptScore W4297235512C121332964 @default.
- W4297235512 hasConceptScore W4297235512C154945302 @default.
- W4297235512 hasConceptScore W4297235512C163258240 @default.
- W4297235512 hasConceptScore W4297235512C165464430 @default.
- W4297235512 hasConceptScore W4297235512C186060115 @default.
- W4297235512 hasConceptScore W4297235512C2780598303 @default.
- W4297235512 hasConceptScore W4297235512C33923547 @default.
- W4297235512 hasConceptScore W4297235512C41008148 @default.
- W4297235512 hasConceptScore W4297235512C43214815 @default.
- W4297235512 hasConceptScore W4297235512C46141821 @default.
- W4297235512 hasConceptScore W4297235512C50644808 @default.