Matches in SemOpenAlex for { <https://semopenalex.org/work/W4297235783> ?p ?o ?g. }
- W4297235783 abstract "In recent years, the microscopy technology referred to as Polarized Light Imaging (3D-PLI) has successfully been established to study the brain’s nerve fiber architecture at the micrometer scale. The myelinated axons of the nervous tissue introduce optical birefringence that can be used to contrast nerve fibers and their tracts from each other. Beyond the generation of contrast, 3D-PLI renders the estimation of local fiber orientations possible. To do so, unstained histological brain sections of 70 μm thickness cut at a cryo-microtome were scanned in a polarimetric setup using rotating polarizing filter elements while keeping the sample unmoved. To address the fundamental question of brain connectivity, i. e., revealing the detailed organizational principles of the brain’s intricate neural networks, the tracing of fiber structures across volumes has to be performed at the microscale. This requires a sound basis for describing the in-plane and out-of-plane orientations of each potential fiber (axis) in each voxel, including information about the confidence level (uncertainty) of the orientation estimates. By this means, complex fiber constellations, e. g., at the white matter to gray matter transition zones or brain regions with low myelination (i. e., low birefringence signal), as can be found in the cerebral cortex, become quantifiable in a reliable manner. Unfortunately, this uncertainty information comes with the high computational price of their underlying Monte-Carlo sampling methods and the lack of a proper visualization. In the presented work, we propose a supervised machine learning approach to estimate the uncertainty of the inferred model parameters. It is shown that the parameter uncertainties strongly correlate with simple, physically explainable features derived from the signal strength. After fitting these correlations using a small sub-sample of the data, the uncertainties can be predicted for the remaining data set with high precision. This reduces the required computation time by more than two orders of magnitude. Additionally, a new visualization of the derived three-dimensional nerve fiber information, including the orientation uncertainty based on ellipsoids, is introduced. This technique makes the derived orientation uncertainty information visually interpretable." @default.
- W4297235783 created "2022-09-28" @default.
- W4297235783 creator A5006808929 @default.
- W4297235783 creator A5009333521 @default.
- W4297235783 creator A5019214080 @default.
- W4297235783 creator A5022945512 @default.
- W4297235783 creator A5034660882 @default.
- W4297235783 creator A5091760856 @default.
- W4297235783 date "2022-09-26" @default.
- W4297235783 modified "2023-09-25" @default.
- W4297235783 title "Fast data-driven computation and intuitive visualization of fiber orientation uncertainty in 3D-polarized light imaging" @default.
- W4297235783 cites W1528439235 @default.
- W4297235783 cites W1754838066 @default.
- W4297235783 cites W1964802316 @default.
- W4297235783 cites W1971398329 @default.
- W4297235783 cites W1988392272 @default.
- W4297235783 cites W2007337338 @default.
- W4297235783 cites W2008950066 @default.
- W4297235783 cites W2011301426 @default.
- W4297235783 cites W2012766927 @default.
- W4297235783 cites W2024660291 @default.
- W4297235783 cites W2029434505 @default.
- W4297235783 cites W2031703351 @default.
- W4297235783 cites W2034453302 @default.
- W4297235783 cites W2037192432 @default.
- W4297235783 cites W2041060053 @default.
- W4297235783 cites W2046529900 @default.
- W4297235783 cites W2058653216 @default.
- W4297235783 cites W2082640418 @default.
- W4297235783 cites W2089512057 @default.
- W4297235783 cites W2089566420 @default.
- W4297235783 cites W2101687185 @default.
- W4297235783 cites W2104610706 @default.
- W4297235783 cites W2107806811 @default.
- W4297235783 cites W2133054326 @default.
- W4297235783 cites W2139718878 @default.
- W4297235783 cites W2142059961 @default.
- W4297235783 cites W2146693559 @default.
- W4297235783 cites W2155616415 @default.
- W4297235783 cites W2171446004 @default.
- W4297235783 cites W2231964267 @default.
- W4297235783 cites W2295803031 @default.
- W4297235783 cites W2333084155 @default.
- W4297235783 cites W2424791915 @default.
- W4297235783 cites W2595003532 @default.
- W4297235783 cites W2612078078 @default.
- W4297235783 cites W2623064601 @default.
- W4297235783 cites W2763736942 @default.
- W4297235783 cites W2787382845 @default.
- W4297235783 cites W2792404339 @default.
- W4297235783 cites W2792872776 @default.
- W4297235783 cites W2800262963 @default.
- W4297235783 cites W2884183601 @default.
- W4297235783 cites W2888422716 @default.
- W4297235783 cites W2893511082 @default.
- W4297235783 cites W2894829799 @default.
- W4297235783 cites W2896006105 @default.
- W4297235783 cites W2905262985 @default.
- W4297235783 cites W2919694754 @default.
- W4297235783 cites W2974311809 @default.
- W4297235783 cites W2998887651 @default.
- W4297235783 cites W3011694435 @default.
- W4297235783 cites W3045574179 @default.
- W4297235783 cites W305292912 @default.
- W4297235783 cites W3081002840 @default.
- W4297235783 cites W3081064828 @default.
- W4297235783 cites W3088525076 @default.
- W4297235783 cites W3102098446 @default.
- W4297235783 cites W3105469151 @default.
- W4297235783 cites W3112717819 @default.
- W4297235783 cites W3113943319 @default.
- W4297235783 cites W3156822836 @default.
- W4297235783 cites W3188924309 @default.
- W4297235783 cites W3197078253 @default.
- W4297235783 cites W3210613163 @default.
- W4297235783 cites W3210989681 @default.
- W4297235783 cites W4200162605 @default.
- W4297235783 cites W4210355901 @default.
- W4297235783 cites W4212890595 @default.
- W4297235783 cites W4220766361 @default.
- W4297235783 cites W4225108117 @default.
- W4297235783 cites W4237210482 @default.
- W4297235783 cites W4283328497 @default.
- W4297235783 cites W80740199 @default.
- W4297235783 doi "https://doi.org/10.3389/fphy.2022.958364" @default.
- W4297235783 hasPublicationYear "2022" @default.
- W4297235783 type Work @default.
- W4297235783 citedByCount "0" @default.
- W4297235783 crossrefType "journal-article" @default.
- W4297235783 hasAuthorship W4297235783A5006808929 @default.
- W4297235783 hasAuthorship W4297235783A5009333521 @default.
- W4297235783 hasAuthorship W4297235783A5019214080 @default.
- W4297235783 hasAuthorship W4297235783A5022945512 @default.
- W4297235783 hasAuthorship W4297235783A5034660882 @default.
- W4297235783 hasAuthorship W4297235783A5091760856 @default.
- W4297235783 hasBestOaLocation W42972357831 @default.
- W4297235783 hasConcept C120665830 @default.
- W4297235783 hasConcept C121332964 @default.
- W4297235783 hasConcept C125743686 @default.
- W4297235783 hasConcept C126838900 @default.