Matches in SemOpenAlex for { <https://semopenalex.org/work/W4297237324> ?p ?o ?g. }
- W4297237324 endingPage "275" @default.
- W4297237324 startingPage "275" @default.
- W4297237324 abstract "With outstanding deep feature learning and nonlinear classification abilities, Convolutional Neural Networks (CNN) have been gradually applied to deal with various fault diagnosis tasks. Affected by variable working conditions and strong noises, the empirical datum always has different probability distributions, and then different data segments may have inconsistent contributions, so more attention should be assigned to the informative data segments. However, most of the CNN-based fault diagnosis methods still retain black-box characteristics, especially the lack of attention mechanisms and ignoring the special contributions of informative data segments. To address these problems, we propose a new intelligent fault diagnosis method comprised of an improved CNN model named Efficient Convolutional Neural Network (ECNN). The extensive view can cover the special characteristic periods, and the small view can locate the essential feature using Pyramidal Dilated Convolution (PDC). Consequently, the receptive field of the model can be greatly enlarged to capture the location information and excavate the remarkable informative data segments. Then, a novel residual network feature calibration and fusion (ResNet-FCF) block was designed, which uses local channel interactions and residual networks based on global channel interactions for weight-redistribution. Therefore, the corresponding channel weight is increased, which puts more attention on the information data segment. The ECNN model has achieved encouraging results in information extraction and feature channel allocation of the feature. Three experiments are used to test different diagnosis methods. The ECNN model achieves the highest average accuracy of fault diagnosis. The comparison results show that ECNN has strong domain adaptation ability, high stability, and superior diagnostic performance." @default.
- W4297237324 created "2022-09-28" @default.
- W4297237324 creator A5017430620 @default.
- W4297237324 creator A5019886822 @default.
- W4297237324 creator A5034737772 @default.
- W4297237324 creator A5037028903 @default.
- W4297237324 creator A5062836728 @default.
- W4297237324 creator A5089966579 @default.
- W4297237324 date "2022-09-26" @default.
- W4297237324 modified "2023-09-25" @default.
- W4297237324 title "ECNN: Intelligent Fault Diagnosis Method Using Efficient Convolutional Neural Network" @default.
- W4297237324 cites W2051382092 @default.
- W4297237324 cites W2083520984 @default.
- W4297237324 cites W2114637544 @default.
- W4297237324 cites W2134502076 @default.
- W4297237324 cites W2310343804 @default.
- W4297237324 cites W2404692435 @default.
- W4297237324 cites W2556345765 @default.
- W4297237324 cites W2768753204 @default.
- W4297237324 cites W2804879845 @default.
- W4297237324 cites W2848613166 @default.
- W4297237324 cites W2997519437 @default.
- W4297237324 cites W3012005617 @default.
- W4297237324 cites W3019762726 @default.
- W4297237324 cites W3025888249 @default.
- W4297237324 cites W3026006566 @default.
- W4297237324 cites W3030997042 @default.
- W4297237324 cites W3035789953 @default.
- W4297237324 cites W3090238656 @default.
- W4297237324 cites W3094105523 @default.
- W4297237324 cites W3094159940 @default.
- W4297237324 cites W3099562783 @default.
- W4297237324 cites W3122126208 @default.
- W4297237324 cites W3126359275 @default.
- W4297237324 cites W3126635901 @default.
- W4297237324 cites W3145770415 @default.
- W4297237324 cites W3157498475 @default.
- W4297237324 cites W3158768656 @default.
- W4297237324 cites W3158868871 @default.
- W4297237324 cites W3171211495 @default.
- W4297237324 cites W3174482241 @default.
- W4297237324 cites W3191184807 @default.
- W4297237324 cites W3201135220 @default.
- W4297237324 cites W3203494009 @default.
- W4297237324 cites W3211117857 @default.
- W4297237324 cites W3215145458 @default.
- W4297237324 cites W4200053442 @default.
- W4297237324 cites W4200356769 @default.
- W4297237324 cites W4206049592 @default.
- W4297237324 cites W4206666183 @default.
- W4297237324 cites W4211227515 @default.
- W4297237324 cites W4281640556 @default.
- W4297237324 doi "https://doi.org/10.3390/act11100275" @default.
- W4297237324 hasPublicationYear "2022" @default.
- W4297237324 type Work @default.
- W4297237324 citedByCount "1" @default.
- W4297237324 countsByYear W42972373242023 @default.
- W4297237324 crossrefType "journal-article" @default.
- W4297237324 hasAuthorship W4297237324A5017430620 @default.
- W4297237324 hasAuthorship W4297237324A5019886822 @default.
- W4297237324 hasAuthorship W4297237324A5034737772 @default.
- W4297237324 hasAuthorship W4297237324A5037028903 @default.
- W4297237324 hasAuthorship W4297237324A5062836728 @default.
- W4297237324 hasAuthorship W4297237324A5089966579 @default.
- W4297237324 hasBestOaLocation W42972373241 @default.
- W4297237324 hasConcept C11413529 @default.
- W4297237324 hasConcept C124101348 @default.
- W4297237324 hasConcept C127162648 @default.
- W4297237324 hasConcept C138885662 @default.
- W4297237324 hasConcept C153180895 @default.
- W4297237324 hasConcept C154945302 @default.
- W4297237324 hasConcept C155512373 @default.
- W4297237324 hasConcept C205649164 @default.
- W4297237324 hasConcept C2776401178 @default.
- W4297237324 hasConcept C31258907 @default.
- W4297237324 hasConcept C41008148 @default.
- W4297237324 hasConcept C41895202 @default.
- W4297237324 hasConcept C50644808 @default.
- W4297237324 hasConcept C58640448 @default.
- W4297237324 hasConcept C58754882 @default.
- W4297237324 hasConcept C81363708 @default.
- W4297237324 hasConceptScore W4297237324C11413529 @default.
- W4297237324 hasConceptScore W4297237324C124101348 @default.
- W4297237324 hasConceptScore W4297237324C127162648 @default.
- W4297237324 hasConceptScore W4297237324C138885662 @default.
- W4297237324 hasConceptScore W4297237324C153180895 @default.
- W4297237324 hasConceptScore W4297237324C154945302 @default.
- W4297237324 hasConceptScore W4297237324C155512373 @default.
- W4297237324 hasConceptScore W4297237324C205649164 @default.
- W4297237324 hasConceptScore W4297237324C2776401178 @default.
- W4297237324 hasConceptScore W4297237324C31258907 @default.
- W4297237324 hasConceptScore W4297237324C41008148 @default.
- W4297237324 hasConceptScore W4297237324C41895202 @default.
- W4297237324 hasConceptScore W4297237324C50644808 @default.
- W4297237324 hasConceptScore W4297237324C58640448 @default.
- W4297237324 hasConceptScore W4297237324C58754882 @default.
- W4297237324 hasConceptScore W4297237324C81363708 @default.
- W4297237324 hasIssue "10" @default.