Matches in SemOpenAlex for { <https://semopenalex.org/work/W4297237554> ?p ?o ?g. }
Showing items 1 to 93 of
93
with 100 items per page.
- W4297237554 endingPage "192" @default.
- W4297237554 startingPage "179" @default.
- W4297237554 abstract "Food security is one of the most important issues discussed worldwide. Furthermore, it becomes more challenging in countries like India, where major population is vegetarian and farmers still follow old conventional farming methods. Plants’ growth is often affected by viral, bacterial diseases. However, experts’ advice on these plant diseases may be costly and time-consuming matter. Recently, computer vision and machine learning are successfully applied to the smart farming. Plant health can be easily monitored, and syndromes can be easily identified by applying machine learning and image processing techniques, over the conventional methods. Leaves are important part of the plant. It generates food for plants using photosynthesis. Hence, damage to leaf may result in reduced food supply to the plant. This results to lesser growth of the plant and lesser flower and fruit bearing capacity. This paper addresses various bacterial and fungal diseases among plants. Impact of each disease on the leaves such as color and shape is also discussed in this paper. This paper studies various deep learning techniques such as convolutional neural network (CNN) model and learning vector quantization (LVQ) algorithm which can be used to distinguish among healthy and disease plants. Difference between healthy and diseased leave was used to train these deep learning classifier. This paper also addresses remedial actions such as recommendation of specific pesticide and its quantity. It was observed that there exists and tradeoff between practical usage of automated system by farmers and accuracy of the system." @default.
- W4297237554 created "2022-09-28" @default.
- W4297237554 creator A5054993073 @default.
- W4297237554 date "2022-09-27" @default.
- W4297237554 modified "2023-09-30" @default.
- W4297237554 title "Deep Learning Techniques for Leaf Health Prediction" @default.
- W4297237554 cites W1181899764 @default.
- W4297237554 cites W1502517641 @default.
- W4297237554 cites W1521726165 @default.
- W4297237554 cites W1561161063 @default.
- W4297237554 cites W1817748893 @default.
- W4297237554 cites W1858660163 @default.
- W4297237554 cites W1990492213 @default.
- W4297237554 cites W2081882777 @default.
- W4297237554 cites W2086377778 @default.
- W4297237554 cites W2098205315 @default.
- W4297237554 cites W2163810466 @default.
- W4297237554 cites W2213241010 @default.
- W4297237554 cites W2241490242 @default.
- W4297237554 cites W2470368200 @default.
- W4297237554 cites W2767767563 @default.
- W4297237554 cites W2800739703 @default.
- W4297237554 cites W2805772477 @default.
- W4297237554 cites W2891667148 @default.
- W4297237554 cites W2901108539 @default.
- W4297237554 cites W2902625477 @default.
- W4297237554 cites W2904583950 @default.
- W4297237554 cites W2941200075 @default.
- W4297237554 cites W2945461009 @default.
- W4297237554 cites W297895949 @default.
- W4297237554 cites W2997809778 @default.
- W4297237554 cites W3111938789 @default.
- W4297237554 cites W3114789653 @default.
- W4297237554 cites W3149749205 @default.
- W4297237554 cites W4255421341 @default.
- W4297237554 doi "https://doi.org/10.1007/978-981-19-3951-8_15" @default.
- W4297237554 hasPublicationYear "2022" @default.
- W4297237554 type Work @default.
- W4297237554 citedByCount "0" @default.
- W4297237554 crossrefType "book-chapter" @default.
- W4297237554 hasAuthorship W4297237554A5054993073 @default.
- W4297237554 hasConcept C108583219 @default.
- W4297237554 hasConcept C118518473 @default.
- W4297237554 hasConcept C119857082 @default.
- W4297237554 hasConcept C127413603 @default.
- W4297237554 hasConcept C150903083 @default.
- W4297237554 hasConcept C154945302 @default.
- W4297237554 hasConcept C18903297 @default.
- W4297237554 hasConcept C2908647359 @default.
- W4297237554 hasConcept C3019235130 @default.
- W4297237554 hasConcept C40567965 @default.
- W4297237554 hasConcept C41008148 @default.
- W4297237554 hasConcept C50644808 @default.
- W4297237554 hasConcept C71924100 @default.
- W4297237554 hasConcept C81363708 @default.
- W4297237554 hasConcept C86803240 @default.
- W4297237554 hasConcept C88463610 @default.
- W4297237554 hasConcept C99454951 @default.
- W4297237554 hasConceptScore W4297237554C108583219 @default.
- W4297237554 hasConceptScore W4297237554C118518473 @default.
- W4297237554 hasConceptScore W4297237554C119857082 @default.
- W4297237554 hasConceptScore W4297237554C127413603 @default.
- W4297237554 hasConceptScore W4297237554C150903083 @default.
- W4297237554 hasConceptScore W4297237554C154945302 @default.
- W4297237554 hasConceptScore W4297237554C18903297 @default.
- W4297237554 hasConceptScore W4297237554C2908647359 @default.
- W4297237554 hasConceptScore W4297237554C3019235130 @default.
- W4297237554 hasConceptScore W4297237554C40567965 @default.
- W4297237554 hasConceptScore W4297237554C41008148 @default.
- W4297237554 hasConceptScore W4297237554C50644808 @default.
- W4297237554 hasConceptScore W4297237554C71924100 @default.
- W4297237554 hasConceptScore W4297237554C81363708 @default.
- W4297237554 hasConceptScore W4297237554C86803240 @default.
- W4297237554 hasConceptScore W4297237554C88463610 @default.
- W4297237554 hasConceptScore W4297237554C99454951 @default.
- W4297237554 hasLocation W42972375541 @default.
- W4297237554 hasOpenAccess W4297237554 @default.
- W4297237554 hasPrimaryLocation W42972375541 @default.
- W4297237554 hasRelatedWork W2337926734 @default.
- W4297237554 hasRelatedWork W2470368200 @default.
- W4297237554 hasRelatedWork W2950208422 @default.
- W4297237554 hasRelatedWork W3173182854 @default.
- W4297237554 hasRelatedWork W3189091156 @default.
- W4297237554 hasRelatedWork W4286233849 @default.
- W4297237554 hasRelatedWork W4311257506 @default.
- W4297237554 hasRelatedWork W4312417841 @default.
- W4297237554 hasRelatedWork W4320802194 @default.
- W4297237554 hasRelatedWork W4366224123 @default.
- W4297237554 isParatext "false" @default.
- W4297237554 isRetracted "false" @default.
- W4297237554 workType "book-chapter" @default.