Matches in SemOpenAlex for { <https://semopenalex.org/work/W4297238411> ?p ?o ?g. }
- W4297238411 endingPage "4763" @default.
- W4297238411 startingPage "4763" @default.
- W4297238411 abstract "Cyanobacterial harmful algal blooms (CyanoHABs) in inland water have emerged as a major global environmental challenge. Although satellite remote sensing technology has been widely used to monitor CyanoHABs, there are also some automatic extraction methods of CyanoHABs based on spectral indices (such as gradient mode, fixed threshold, and the Otsu method, etc.), the accuracy is generally not very high. This study developed a high-precision automatic extraction model for CyanoHABs using a deep learning (DL) network based on Sentinel-2 multi-spectral instrument (MSI) data of Chaohu Lake, China. First, we generated the CyanoHABs “ground truth” dataset based on visual interpretation. Thereafter, we trained the CyanoHABs extraction model based on a DL image segmentation network (U-Net) and extracted CyanoHABs. Then, we compared three previous automatic CyanoHABs extraction methods based on spectral index threshold segmentation and evaluated the accuracy of the results. Based on “ground truth”, at the pixel level, the F1 score and relative error (RE) of the DL model extraction results are 0.90 and 3%, respectively, which are better than that of the gradient mode (0.81,40%), the fixed threshold (0.81, 31%), and the Otsu method (0.53, 62%); at CyanoHABs area level, the R2 of the scatter fitting between DL model result and the “ground truth” is 0.99, which is also higher than the other three methods (0.90, 0.92, 0.84, respectively). Finally, we produced the annual CyanoHABs frequency map based on DL model results. The frequency map showed that the CyanoHABs on the northwest bank are significantly higher than in the center and east of Chaohu Lake, and the most serious CyanoHABs occurred in 2018 and 2019. Furthermore, CyanoHAB extraction based on this model did not cause cloud misjudgment and exhibited good promotion ability in Taihu Lake, China. Hence, our findings indicate the high potential of the CyanoHABs extraction model based on DL in further high-precision and automatic extraction of CyanoHABs from large-scale water bodies." @default.
- W4297238411 created "2022-09-28" @default.
- W4297238411 creator A5013038112 @default.
- W4297238411 creator A5016613431 @default.
- W4297238411 creator A5025062608 @default.
- W4297238411 creator A5031282137 @default.
- W4297238411 creator A5033613632 @default.
- W4297238411 creator A5061863788 @default.
- W4297238411 creator A5062358181 @default.
- W4297238411 creator A5066738004 @default.
- W4297238411 creator A5072909687 @default.
- W4297238411 creator A5075013625 @default.
- W4297238411 creator A5075331011 @default.
- W4297238411 creator A5080194800 @default.
- W4297238411 date "2022-09-23" @default.
- W4297238411 modified "2023-10-17" @default.
- W4297238411 title "Deep Learning-Based Automatic Extraction of Cyanobacterial Blooms from Sentinel-2 MSI Satellite Data" @default.
- W4297238411 cites W1443570721 @default.
- W4297238411 cites W1554089121 @default.
- W4297238411 cites W1885185971 @default.
- W4297238411 cites W1901129140 @default.
- W4297238411 cites W1966197059 @default.
- W4297238411 cites W1988211208 @default.
- W4297238411 cites W2015904353 @default.
- W4297238411 cites W2043544053 @default.
- W4297238411 cites W2066471471 @default.
- W4297238411 cites W2120634571 @default.
- W4297238411 cites W2133059825 @default.
- W4297238411 cites W2133873949 @default.
- W4297238411 cites W2136758825 @default.
- W4297238411 cites W2365245992 @default.
- W4297238411 cites W2379825782 @default.
- W4297238411 cites W2412588858 @default.
- W4297238411 cites W2613654190 @default.
- W4297238411 cites W2740144340 @default.
- W4297238411 cites W2751786729 @default.
- W4297238411 cites W2762692548 @default.
- W4297238411 cites W2795663338 @default.
- W4297238411 cites W2809890813 @default.
- W4297238411 cites W2895359416 @default.
- W4297238411 cites W2897285410 @default.
- W4297238411 cites W2901852697 @default.
- W4297238411 cites W2905802433 @default.
- W4297238411 cites W2906789880 @default.
- W4297238411 cites W2910594529 @default.
- W4297238411 cites W2953928051 @default.
- W4297238411 cites W2962949934 @default.
- W4297238411 cites W2966780382 @default.
- W4297238411 cites W2979808541 @default.
- W4297238411 cites W2989194957 @default.
- W4297238411 cites W2999322844 @default.
- W4297238411 cites W3008439211 @default.
- W4297238411 cites W3011560410 @default.
- W4297238411 cites W3035251314 @default.
- W4297238411 cites W3037870660 @default.
- W4297238411 cites W3087899714 @default.
- W4297238411 cites W3121665539 @default.
- W4297238411 cites W3129522569 @default.
- W4297238411 cites W3138154218 @default.
- W4297238411 cites W3161451606 @default.
- W4297238411 cites W3181759169 @default.
- W4297238411 cites W3194490815 @default.
- W4297238411 cites W3194719203 @default.
- W4297238411 cites W3196824925 @default.
- W4297238411 cites W3212365951 @default.
- W4297238411 cites W4210501753 @default.
- W4297238411 cites W4283013370 @default.
- W4297238411 cites W4382706248 @default.
- W4297238411 cites W4383002780 @default.
- W4297238411 doi "https://doi.org/10.3390/rs14194763" @default.
- W4297238411 hasPublicationYear "2022" @default.
- W4297238411 type Work @default.
- W4297238411 citedByCount "6" @default.
- W4297238411 countsByYear W42972384112023 @default.
- W4297238411 crossrefType "journal-article" @default.
- W4297238411 hasAuthorship W4297238411A5013038112 @default.
- W4297238411 hasAuthorship W4297238411A5016613431 @default.
- W4297238411 hasAuthorship W4297238411A5025062608 @default.
- W4297238411 hasAuthorship W4297238411A5031282137 @default.
- W4297238411 hasAuthorship W4297238411A5033613632 @default.
- W4297238411 hasAuthorship W4297238411A5061863788 @default.
- W4297238411 hasAuthorship W4297238411A5062358181 @default.
- W4297238411 hasAuthorship W4297238411A5066738004 @default.
- W4297238411 hasAuthorship W4297238411A5072909687 @default.
- W4297238411 hasAuthorship W4297238411A5075013625 @default.
- W4297238411 hasAuthorship W4297238411A5075331011 @default.
- W4297238411 hasAuthorship W4297238411A5080194800 @default.
- W4297238411 hasBestOaLocation W42972384111 @default.
- W4297238411 hasConcept C124504099 @default.
- W4297238411 hasConcept C127313418 @default.
- W4297238411 hasConcept C127413603 @default.
- W4297238411 hasConcept C146849305 @default.
- W4297238411 hasConcept C146978453 @default.
- W4297238411 hasConcept C153180895 @default.
- W4297238411 hasConcept C154945302 @default.
- W4297238411 hasConcept C160633673 @default.
- W4297238411 hasConcept C185592680 @default.
- W4297238411 hasConcept C19269812 @default.