Matches in SemOpenAlex for { <https://semopenalex.org/work/W4297238576> ?p ?o ?g. }
Showing items 1 to 81 of
81
with 100 items per page.
- W4297238576 endingPage "196" @default.
- W4297238576 startingPage "185" @default.
- W4297238576 abstract "Histology has significant importance in the medical field and healthcare services in terms of microbiological studies. Automatic analysis of tissues and organs based on histological images is an open problem due to the shortcomings of necessary tools. Moreover, the accurate identification and analysis of tissues that is a combination of cells are essential to understanding the mechanisms of diseases and to making a diagnosis. The effective performance of machine learning (ML) and deep learning (DL) methods has provided the solution to several state-of-the-art medical problems. In this study, a novel histological dataset was created using the preparations prepared both for students in laboratory courses and obtained by ourselves in the Department of Histology and Embryology. The created dataset consists of blood, connective, epithelial, muscle, and nervous tissue. Blood, connective, epithelial, muscle, and nervous tissue preparations were obtained from human tissues or tissues from various human-like mammals at different times. Various ML techniques have been tested to provide a comprehensive analysis of performance in classification. In experimental studies, AdaBoost (AB), Artificial Neural Networks (ANN), Decision Tree (DT), Logistic Regression (LR), Naive Bayes (NB), Random Forest (RF), and Support Vector Machines (SVM) have been analyzed. The proposed artificial intelligence (AI) framework is useful as educational material for undergraduate and graduate students in medical faculties and health sciences, especially during pandemic and distance education periods. In addition, it can also be utilized as a computer-aided medical decision support system for medical experts to minimize spent-time and job performance losses." @default.
- W4297238576 created "2022-09-28" @default.
- W4297238576 creator A5027045454 @default.
- W4297238576 creator A5043995534 @default.
- W4297238576 creator A5080390300 @default.
- W4297238576 creator A5089814459 @default.
- W4297238576 date "2022-09-30" @default.
- W4297238576 modified "2023-09-27" @default.
- W4297238576 title "A Novel Histological Dataset and Machine Learning Applications" @default.
- W4297238576 cites W2282915343 @default.
- W4297238576 cites W2886857600 @default.
- W4297238576 cites W2966647688 @default.
- W4297238576 cites W2991603289 @default.
- W4297238576 cites W3018829521 @default.
- W4297238576 cites W3092228902 @default.
- W4297238576 cites W3177094760 @default.
- W4297238576 cites W3180014654 @default.
- W4297238576 cites W3185435078 @default.
- W4297238576 cites W3193532867 @default.
- W4297238576 cites W3196516823 @default.
- W4297238576 doi "https://doi.org/10.55525/tjst.1134354" @default.
- W4297238576 hasPublicationYear "2022" @default.
- W4297238576 type Work @default.
- W4297238576 citedByCount "0" @default.
- W4297238576 crossrefType "journal-article" @default.
- W4297238576 hasAuthorship W4297238576A5027045454 @default.
- W4297238576 hasAuthorship W4297238576A5043995534 @default.
- W4297238576 hasAuthorship W4297238576A5080390300 @default.
- W4297238576 hasAuthorship W4297238576A5089814459 @default.
- W4297238576 hasBestOaLocation W42972385761 @default.
- W4297238576 hasConcept C116834253 @default.
- W4297238576 hasConcept C119857082 @default.
- W4297238576 hasConcept C12267149 @default.
- W4297238576 hasConcept C141404830 @default.
- W4297238576 hasConcept C142724271 @default.
- W4297238576 hasConcept C154945302 @default.
- W4297238576 hasConcept C169258074 @default.
- W4297238576 hasConcept C41008148 @default.
- W4297238576 hasConcept C50644808 @default.
- W4297238576 hasConcept C518705261 @default.
- W4297238576 hasConcept C52001869 @default.
- W4297238576 hasConcept C59822182 @default.
- W4297238576 hasConcept C71924100 @default.
- W4297238576 hasConcept C84525736 @default.
- W4297238576 hasConcept C86803240 @default.
- W4297238576 hasConceptScore W4297238576C116834253 @default.
- W4297238576 hasConceptScore W4297238576C119857082 @default.
- W4297238576 hasConceptScore W4297238576C12267149 @default.
- W4297238576 hasConceptScore W4297238576C141404830 @default.
- W4297238576 hasConceptScore W4297238576C142724271 @default.
- W4297238576 hasConceptScore W4297238576C154945302 @default.
- W4297238576 hasConceptScore W4297238576C169258074 @default.
- W4297238576 hasConceptScore W4297238576C41008148 @default.
- W4297238576 hasConceptScore W4297238576C50644808 @default.
- W4297238576 hasConceptScore W4297238576C518705261 @default.
- W4297238576 hasConceptScore W4297238576C52001869 @default.
- W4297238576 hasConceptScore W4297238576C59822182 @default.
- W4297238576 hasConceptScore W4297238576C71924100 @default.
- W4297238576 hasConceptScore W4297238576C84525736 @default.
- W4297238576 hasConceptScore W4297238576C86803240 @default.
- W4297238576 hasIssue "2" @default.
- W4297238576 hasLocation W42972385761 @default.
- W4297238576 hasLocation W42972385762 @default.
- W4297238576 hasOpenAccess W4297238576 @default.
- W4297238576 hasPrimaryLocation W42972385761 @default.
- W4297238576 hasRelatedWork W2936214295 @default.
- W4297238576 hasRelatedWork W3083327307 @default.
- W4297238576 hasRelatedWork W3127425528 @default.
- W4297238576 hasRelatedWork W3170784702 @default.
- W4297238576 hasRelatedWork W3204641204 @default.
- W4297238576 hasRelatedWork W4200057378 @default.
- W4297238576 hasRelatedWork W4200059385 @default.
- W4297238576 hasRelatedWork W4280583453 @default.
- W4297238576 hasRelatedWork W4293069612 @default.
- W4297238576 hasRelatedWork W4375930479 @default.
- W4297238576 hasVolume "17" @default.
- W4297238576 isParatext "false" @default.
- W4297238576 isRetracted "false" @default.
- W4297238576 workType "article" @default.