Matches in SemOpenAlex for { <https://semopenalex.org/work/W4297248818> ?p ?o ?g. }
- W4297248818 abstract "Sustainable operations management will appeal to the post-pandemic world. As the economy recovers, the surging demand for low-carbon bike-sharing has led to exacerbated mismatch in urban transportation. It is a serious challenge to optimize the reallocation schedule of sharing bikes among multiple positions in a network. To address the problem, we develop a novel predict-then-optimize method consisting of a data-driven robust optimization model and a branch-and-price algorithm. The optimization model derives the predicted demand surplus of each position based on historical data, enabling the optimal reallocation schedule in the network at minimum operational costs. Based on the prediction, the branch-and-price algorithm can find out the best routes of assigning bikes to specific positions that further improves transportation efficiency. Finally, we deploy the predict-then-optimize method to a realistic bike-sharing network in one major city of China. The computational results demonstrate that our method can significantly save the cost of operations and reduce the waste of resources. Therefore, the novel predict-then-optimize method has a great potential to facilitate the sustainable development of bike-sharing systems in urban transportation." @default.
- W4297248818 created "2022-09-28" @default.
- W4297248818 creator A5035222399 @default.
- W4297248818 creator A5038129252 @default.
- W4297248818 creator A5042824665 @default.
- W4297248818 creator A5075080019 @default.
- W4297248818 creator A5080402766 @default.
- W4297248818 date "2022-09-20" @default.
- W4297248818 modified "2023-10-01" @default.
- W4297248818 title "A novel predict-then-optimize method for sustainable bike-sharing management: a data-driven study in China" @default.
- W4297248818 cites W1428828117 @default.
- W4297248818 cites W1541543614 @default.
- W4297248818 cites W1660348267 @default.
- W4297248818 cites W1740140547 @default.
- W4297248818 cites W1853087932 @default.
- W4297248818 cites W1878683599 @default.
- W4297248818 cites W1970180010 @default.
- W4297248818 cites W2011155282 @default.
- W4297248818 cites W2029475443 @default.
- W4297248818 cites W2039884997 @default.
- W4297248818 cites W2083566211 @default.
- W4297248818 cites W2107968842 @default.
- W4297248818 cites W2111547563 @default.
- W4297248818 cites W2156973359 @default.
- W4297248818 cites W2189669541 @default.
- W4297248818 cites W2238939232 @default.
- W4297248818 cites W2302573915 @default.
- W4297248818 cites W2462551600 @default.
- W4297248818 cites W2606056204 @default.
- W4297248818 cites W2618454575 @default.
- W4297248818 cites W2713876143 @default.
- W4297248818 cites W2734834344 @default.
- W4297248818 cites W2745188119 @default.
- W4297248818 cites W2754195213 @default.
- W4297248818 cites W2755898715 @default.
- W4297248818 cites W2757211914 @default.
- W4297248818 cites W2765094744 @default.
- W4297248818 cites W2775265443 @default.
- W4297248818 cites W2780508324 @default.
- W4297248818 cites W2781406876 @default.
- W4297248818 cites W2791961199 @default.
- W4297248818 cites W2793927960 @default.
- W4297248818 cites W2796845510 @default.
- W4297248818 cites W2800812001 @default.
- W4297248818 cites W2806415550 @default.
- W4297248818 cites W2810284264 @default.
- W4297248818 cites W2854471438 @default.
- W4297248818 cites W2884967400 @default.
- W4297248818 cites W2886815464 @default.
- W4297248818 cites W2894413183 @default.
- W4297248818 cites W2898443427 @default.
- W4297248818 cites W2905319009 @default.
- W4297248818 cites W2912348842 @default.
- W4297248818 cites W2912610170 @default.
- W4297248818 cites W2921600633 @default.
- W4297248818 cites W2942640611 @default.
- W4297248818 cites W2945137226 @default.
- W4297248818 cites W2955472062 @default.
- W4297248818 cites W2961232924 @default.
- W4297248818 cites W2981985001 @default.
- W4297248818 cites W2982834828 @default.
- W4297248818 cites W2987616316 @default.
- W4297248818 cites W2994843702 @default.
- W4297248818 cites W2999696017 @default.
- W4297248818 cites W2999729702 @default.
- W4297248818 cites W3006660570 @default.
- W4297248818 cites W3017736765 @default.
- W4297248818 cites W3020234765 @default.
- W4297248818 cites W3028428492 @default.
- W4297248818 cites W3033593591 @default.
- W4297248818 cites W3036239563 @default.
- W4297248818 cites W3087066227 @default.
- W4297248818 cites W3093565996 @default.
- W4297248818 cites W3131441060 @default.
- W4297248818 cites W3136027957 @default.
- W4297248818 cites W3138992645 @default.
- W4297248818 cites W3155121003 @default.
- W4297248818 cites W3157456783 @default.
- W4297248818 cites W3169921076 @default.
- W4297248818 cites W3175480934 @default.
- W4297248818 cites W3193767823 @default.
- W4297248818 cites W3206821131 @default.
- W4297248818 cites W3209609205 @default.
- W4297248818 cites W3211471836 @default.
- W4297248818 cites W3216777920 @default.
- W4297248818 cites W4226442072 @default.
- W4297248818 doi "https://doi.org/10.1007/s10479-022-04965-0" @default.
- W4297248818 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36157978" @default.
- W4297248818 hasPublicationYear "2022" @default.
- W4297248818 type Work @default.
- W4297248818 citedByCount "0" @default.
- W4297248818 crossrefType "journal-article" @default.
- W4297248818 hasAuthorship W4297248818A5035222399 @default.
- W4297248818 hasAuthorship W4297248818A5038129252 @default.
- W4297248818 hasAuthorship W4297248818A5042824665 @default.
- W4297248818 hasAuthorship W4297248818A5075080019 @default.
- W4297248818 hasAuthorship W4297248818A5080402766 @default.
- W4297248818 hasBestOaLocation W42972488181 @default.
- W4297248818 hasConcept C111919701 @default.
- W4297248818 hasConcept C127413603 @default.