Matches in SemOpenAlex for { <https://semopenalex.org/work/W4297253273> ?p ?o ?g. }
- W4297253273 abstract "Mitochondrial electron transport chain (ETC) dysfunction due to mutations in the nuclear or mitochondrial genome is a common cause of metabolic disease in humans and displays striking tissue specificity depending on the affected gene. The mechanisms underlying tissue-specific phenotypes are not understood. Complex I (cI) is classically considered the entry point for electrons into the ETC, and in vitro experiments indicate that cI is required for basal respiration and maintenance of the NAD+/NADH ratio, an indicator of cellular redox status. This finding has largely not been tested in vivo. Here, we report that mitochondrial complex I is dispensable for homeostasis of the adult mouse liver; animals with hepatocyte-specific loss of cI function display no overt phenotypes or signs of liver damage, and maintain liver function, redox and oxygen status. Further analysis of cI-deficient livers did not reveal significant proteomic or metabolic changes, indicating little to no compensation is required in the setting of complex I loss. In contrast, complex IV (cIV) dysfunction in adult hepatocytes results in decreased liver function, impaired oxygen handling, steatosis, and liver damage, accompanied by significant metabolomic and proteomic perturbations. Our results support a model whereby complex I loss is tolerated in the mouse liver because hepatocytes use alternative electron donors to fuel the mitochondrial ETC.Mitochondria are specialised structures inside cells that help to convert nutrients into energy. They take electrons from nutrients and use them to power biochemical reactions that supply chemical fuel. Previous studies of cells grown in the laboratory have found that electrons enter this process via a large assembly of proteins in mitochondria called complex I. Understanding the mechanism of energy production is important, as issues with mitochondria can lead to a variety of metabolic diseases. However, it is still unclear how complex I acts in living animals. Lesner et al. addressed this knowledge gap by genetically removing a key protein from complex I in the liver of mice. Surprisingly, the animals did not develop any detectable symptoms and maintained healthy liver function. Mice did not seem to compensate by making energy in a different way, suggesting that complex I is not normally used by the mouse liver for this process. This research suggests that biologists should reconsider the mechanism that mitochondria use to power cells in animals. While the role of Complex I in electron transfer is well established in laboratory-grown cells and some organs, like the brain, it cannot be assumed this applies to the whole body. Understanding energy production in specific organs could help researchers to develop nutrient-based therapies for metabolic diseases." @default.
- W4297253273 created "2022-09-28" @default.
- W4297253273 creator A5002672824 @default.
- W4297253273 creator A5005189031 @default.
- W4297253273 creator A5010804247 @default.
- W4297253273 creator A5013924501 @default.
- W4297253273 creator A5027939394 @default.
- W4297253273 creator A5036761832 @default.
- W4297253273 creator A5049214538 @default.
- W4297253273 creator A5049532385 @default.
- W4297253273 creator A5051694835 @default.
- W4297253273 creator A5056748210 @default.
- W4297253273 creator A5066957398 @default.
- W4297253273 creator A5080248686 @default.
- W4297253273 date "2022-09-26" @default.
- W4297253273 modified "2023-10-14" @default.
- W4297253273 title "Differential requirements for mitochondrial electron transport chain components in the adult murine liver" @default.
- W4297253273 cites W1550224385 @default.
- W4297253273 cites W1553978925 @default.
- W4297253273 cites W1938513152 @default.
- W4297253273 cites W1964437924 @default.
- W4297253273 cites W1965285497 @default.
- W4297253273 cites W1968296590 @default.
- W4297253273 cites W1971436788 @default.
- W4297253273 cites W1980339513 @default.
- W4297253273 cites W1982584549 @default.
- W4297253273 cites W1988292100 @default.
- W4297253273 cites W1988565273 @default.
- W4297253273 cites W1988991871 @default.
- W4297253273 cites W2014092468 @default.
- W4297253273 cites W2014809950 @default.
- W4297253273 cites W2018422556 @default.
- W4297253273 cites W2020729319 @default.
- W4297253273 cites W2021029128 @default.
- W4297253273 cites W2028449239 @default.
- W4297253273 cites W2034203003 @default.
- W4297253273 cites W2038026202 @default.
- W4297253273 cites W2041046938 @default.
- W4297253273 cites W2056388234 @default.
- W4297253273 cites W2056829852 @default.
- W4297253273 cites W2058697823 @default.
- W4297253273 cites W2061560837 @default.
- W4297253273 cites W2075623551 @default.
- W4297253273 cites W2083128279 @default.
- W4297253273 cites W2086749268 @default.
- W4297253273 cites W2096482492 @default.
- W4297253273 cites W2098813681 @default.
- W4297253273 cites W2102003484 @default.
- W4297253273 cites W2107612815 @default.
- W4297253273 cites W2109867174 @default.
- W4297253273 cites W2120587654 @default.
- W4297253273 cites W2123106337 @default.
- W4297253273 cites W2126532016 @default.
- W4297253273 cites W2126962886 @default.
- W4297253273 cites W2129270100 @default.
- W4297253273 cites W2130410032 @default.
- W4297253273 cites W2134807790 @default.
- W4297253273 cites W2148894885 @default.
- W4297253273 cites W2156241187 @default.
- W4297253273 cites W2162239011 @default.
- W4297253273 cites W2164811961 @default.
- W4297253273 cites W2180760460 @default.
- W4297253273 cites W2264411128 @default.
- W4297253273 cites W2278896297 @default.
- W4297253273 cites W2305670323 @default.
- W4297253273 cites W2624230505 @default.
- W4297253273 cites W2737993744 @default.
- W4297253273 cites W2783062524 @default.
- W4297253273 cites W2891342696 @default.
- W4297253273 cites W2900029109 @default.
- W4297253273 cites W2911031643 @default.
- W4297253273 cites W2939175683 @default.
- W4297253273 cites W2981577392 @default.
- W4297253273 cites W2995147378 @default.
- W4297253273 cites W3000298699 @default.
- W4297253273 cites W3010844199 @default.
- W4297253273 cites W3020645733 @default.
- W4297253273 cites W3029979731 @default.
- W4297253273 cites W3072295979 @default.
- W4297253273 cites W3089296243 @default.
- W4297253273 cites W3162853234 @default.
- W4297253273 cites W3201073070 @default.
- W4297253273 cites W4210476933 @default.
- W4297253273 cites W4210549559 @default.
- W4297253273 cites W4251590474 @default.
- W4297253273 cites W4297253273 @default.
- W4297253273 doi "https://doi.org/10.7554/elife.80919" @default.
- W4297253273 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36154948" @default.
- W4297253273 hasPublicationYear "2022" @default.
- W4297253273 type Work @default.
- W4297253273 citedByCount "8" @default.
- W4297253273 countsByYear W42972532732022 @default.
- W4297253273 countsByYear W42972532732023 @default.
- W4297253273 crossrefType "journal-article" @default.
- W4297253273 hasAuthorship W4297253273A5002672824 @default.
- W4297253273 hasAuthorship W4297253273A5005189031 @default.
- W4297253273 hasAuthorship W4297253273A5010804247 @default.
- W4297253273 hasAuthorship W4297253273A5013924501 @default.
- W4297253273 hasAuthorship W4297253273A5027939394 @default.
- W4297253273 hasAuthorship W4297253273A5036761832 @default.