Matches in SemOpenAlex for { <https://semopenalex.org/work/W4297256650> ?p ?o ?g. }
- W4297256650 endingPage "e13666" @default.
- W4297256650 startingPage "e13666" @default.
- W4297256650 abstract "One way to better understand the structure in DNA is by learning to predict the sequence. Here, we trained a model to predict the missing base at any given position, given its left and right flanking contexts. Our best-performing model was a neural network that obtained an accuracy close to 54% on the human genome, which is 2% points better than modelling the data using a Markov model. In likelihood-ratio tests, the neural network performed significantly better than any of the alternative models by a large margin. We report on where the accuracy was obtained, first observing that the performance appeared to be uniform over the chromosomes. The models performed best in repetitive sequences, as expected, although their performance far from random in the more difficult coding sections, the proportions being ~70:40%. We further explored the sources of the accuracy, Fourier transforming the predictions revealed weak but clear periodic signals. In the human genome the characteristic periods hinted at connections to nucleosome positioning. We found similar periodic signals in GC/AT content in the human genome, which to the best of our knowledge have not been reported before. On other large genomes similarly high accuracy was found, while lower predictive accuracy was observed on smaller genomes. Only in the mouse genome did we see periodic signals in the same range as in the human genome, though weaker and of a different type. This indicates that the sources of these signals are other or more than nucleosome arrangement. Interestingly, applying a model trained on the mouse genome to the human genome resulted in a performance far below that of the human model, except in the difficult coding regions. Despite the clear outcomes of the likelihood-ratio tests, there is currently a limited superiority of the neural network methods over the Markov model. We expect, however, that there is great potential for better modelling DNA using different neural network architectures." @default.
- W4297256650 created "2022-09-28" @default.
- W4297256650 creator A5010165733 @default.
- W4297256650 creator A5011484483 @default.
- W4297256650 creator A5028760066 @default.
- W4297256650 creator A5083542637 @default.
- W4297256650 date "2022-09-20" @default.
- W4297256650 modified "2023-09-26" @default.
- W4297256650 title "Context dependent prediction in DNA sequence using neural networks" @default.
- W4297256650 cites W1830719945 @default.
- W4297256650 cites W2004469916 @default.
- W4297256650 cites W2011480164 @default.
- W4297256650 cites W2051866505 @default.
- W4297256650 cites W2064675550 @default.
- W4297256650 cites W2087814426 @default.
- W4297256650 cites W2101926813 @default.
- W4297256650 cites W2112796928 @default.
- W4297256650 cites W2132339004 @default.
- W4297256650 cites W2165618847 @default.
- W4297256650 cites W2167764944 @default.
- W4297256650 cites W2167856604 @default.
- W4297256650 cites W2284978990 @default.
- W4297256650 cites W2795625769 @default.
- W4297256650 cites W2808938092 @default.
- W4297256650 cites W2901218091 @default.
- W4297256650 cites W2958584774 @default.
- W4297256650 cites W3004985820 @default.
- W4297256650 cites W3127238141 @default.
- W4297256650 cites W4225852959 @default.
- W4297256650 doi "https://doi.org/10.7717/peerj.13666" @default.
- W4297256650 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36157058" @default.
- W4297256650 hasPublicationYear "2022" @default.
- W4297256650 type Work @default.
- W4297256650 citedByCount "0" @default.
- W4297256650 crossrefType "journal-article" @default.
- W4297256650 hasAuthorship W4297256650A5010165733 @default.
- W4297256650 hasAuthorship W4297256650A5011484483 @default.
- W4297256650 hasAuthorship W4297256650A5028760066 @default.
- W4297256650 hasAuthorship W4297256650A5083542637 @default.
- W4297256650 hasBestOaLocation W42972566501 @default.
- W4297256650 hasConcept C104317684 @default.
- W4297256650 hasConcept C119857082 @default.
- W4297256650 hasConcept C141231307 @default.
- W4297256650 hasConcept C151730666 @default.
- W4297256650 hasConcept C153180895 @default.
- W4297256650 hasConcept C154945302 @default.
- W4297256650 hasConcept C197077220 @default.
- W4297256650 hasConcept C23224414 @default.
- W4297256650 hasConcept C2778112365 @default.
- W4297256650 hasConcept C2779343474 @default.
- W4297256650 hasConcept C41008148 @default.
- W4297256650 hasConcept C50644808 @default.
- W4297256650 hasConcept C51679486 @default.
- W4297256650 hasConcept C54355233 @default.
- W4297256650 hasConcept C552990157 @default.
- W4297256650 hasConcept C70721500 @default.
- W4297256650 hasConcept C774472 @default.
- W4297256650 hasConcept C83640560 @default.
- W4297256650 hasConcept C84772758 @default.
- W4297256650 hasConcept C86803240 @default.
- W4297256650 hasConceptScore W4297256650C104317684 @default.
- W4297256650 hasConceptScore W4297256650C119857082 @default.
- W4297256650 hasConceptScore W4297256650C141231307 @default.
- W4297256650 hasConceptScore W4297256650C151730666 @default.
- W4297256650 hasConceptScore W4297256650C153180895 @default.
- W4297256650 hasConceptScore W4297256650C154945302 @default.
- W4297256650 hasConceptScore W4297256650C197077220 @default.
- W4297256650 hasConceptScore W4297256650C23224414 @default.
- W4297256650 hasConceptScore W4297256650C2778112365 @default.
- W4297256650 hasConceptScore W4297256650C2779343474 @default.
- W4297256650 hasConceptScore W4297256650C41008148 @default.
- W4297256650 hasConceptScore W4297256650C50644808 @default.
- W4297256650 hasConceptScore W4297256650C51679486 @default.
- W4297256650 hasConceptScore W4297256650C54355233 @default.
- W4297256650 hasConceptScore W4297256650C552990157 @default.
- W4297256650 hasConceptScore W4297256650C70721500 @default.
- W4297256650 hasConceptScore W4297256650C774472 @default.
- W4297256650 hasConceptScore W4297256650C83640560 @default.
- W4297256650 hasConceptScore W4297256650C84772758 @default.
- W4297256650 hasConceptScore W4297256650C86803240 @default.
- W4297256650 hasFunder F4320325957 @default.
- W4297256650 hasLocation W42972566501 @default.
- W4297256650 hasLocation W42972566502 @default.
- W4297256650 hasLocation W42972566503 @default.
- W4297256650 hasLocation W42972566504 @default.
- W4297256650 hasOpenAccess W4297256650 @default.
- W4297256650 hasPrimaryLocation W42972566501 @default.
- W4297256650 hasRelatedWork W1989580539 @default.
- W4297256650 hasRelatedWork W1996581313 @default.
- W4297256650 hasRelatedWork W2057998009 @default.
- W4297256650 hasRelatedWork W2105376545 @default.
- W4297256650 hasRelatedWork W2121105652 @default.
- W4297256650 hasRelatedWork W2255506873 @default.
- W4297256650 hasRelatedWork W2339451948 @default.
- W4297256650 hasRelatedWork W2539985974 @default.
- W4297256650 hasRelatedWork W2884856132 @default.
- W4297256650 hasRelatedWork W2944602870 @default.
- W4297256650 hasVolume "10" @default.