Matches in SemOpenAlex for { <https://semopenalex.org/work/W4297261054> ?p ?o ?g. }
Showing items 1 to 89 of
89
with 100 items per page.
- W4297261054 endingPage "108396" @default.
- W4297261054 startingPage "108396" @default.
- W4297261054 abstract "Over the past few years, the awful COVID-19 pandemic effect has become a lethal sickness. The processing of the gathered samples requires extra time due to the use of medical diagnostic equipment, methodologies, and clinical testing procedures for the early diagnosis of infected individuals. An innovative multimodal paradigm for the early diagnosis and precise categorization of COVID-19 is put up as a solution to this issue. To extract distinguishing features from the prepared chest X-ray picture and cough (audio) database, chest X-ray-based and cough-based model are used here. Other public chest X-ray image datasets, and the Coswara cough (audio) dataset containing 92 COVID-19 positive, and 1079 healthy subjects (people) using the deep Uniform-Net, and Convolutional Neural Network (CNN). The weighted sum-rule fusion method and ensemble deep learning algorithms are utilized to further combine the extracted features. For the early diagnosis of patients, the framework offers an accuracy of 98.67%. • A novel multimodal framework is proposed for the early diagnosis and accurate classification of COVID-19. • The extracted features are fused using the weighted sum-rule fusion technique for early diagnosis and accurate prediction. • The framework provided an accuracy of 98.67% (X-ray based) and 86.53% (cough based diagnosis) for early diagnosis of patients." @default.
- W4297261054 created "2022-09-28" @default.
- W4297261054 creator A5010754991 @default.
- W4297261054 creator A5040949172 @default.
- W4297261054 creator A5045835277 @default.
- W4297261054 creator A5056897042 @default.
- W4297261054 creator A5065619505 @default.
- W4297261054 creator A5080678140 @default.
- W4297261054 date "2022-10-01" @default.
- W4297261054 modified "2023-10-16" @default.
- W4297261054 title "Ensemble multimodal deep learning for early diagnosis and accurate classification of COVID-19" @default.
- W4297261054 cites W1977405994 @default.
- W4297261054 cites W2570343428 @default.
- W4297261054 cites W3013601031 @default.
- W4297261054 cites W3017855299 @default.
- W4297261054 cites W3023402713 @default.
- W4297261054 cites W3035378948 @default.
- W4297261054 cites W3037538421 @default.
- W4297261054 cites W3091468319 @default.
- W4297261054 cites W3105081694 @default.
- W4297261054 cites W3105837102 @default.
- W4297261054 cites W3118592267 @default.
- W4297261054 cites W3133191822 @default.
- W4297261054 cites W3134331361 @default.
- W4297261054 cites W3164710970 @default.
- W4297261054 cites W3183605158 @default.
- W4297261054 cites W4200161740 @default.
- W4297261054 cites W4221107627 @default.
- W4297261054 cites W4289526596 @default.
- W4297261054 doi "https://doi.org/10.1016/j.compeleceng.2022.108396" @default.
- W4297261054 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36160764" @default.
- W4297261054 hasPublicationYear "2022" @default.
- W4297261054 type Work @default.
- W4297261054 citedByCount "6" @default.
- W4297261054 countsByYear W42972610542022 @default.
- W4297261054 countsByYear W42972610542023 @default.
- W4297261054 crossrefType "journal-article" @default.
- W4297261054 hasAuthorship W4297261054A5010754991 @default.
- W4297261054 hasAuthorship W4297261054A5040949172 @default.
- W4297261054 hasAuthorship W4297261054A5045835277 @default.
- W4297261054 hasAuthorship W4297261054A5056897042 @default.
- W4297261054 hasAuthorship W4297261054A5065619505 @default.
- W4297261054 hasAuthorship W4297261054A5080678140 @default.
- W4297261054 hasConcept C108583219 @default.
- W4297261054 hasConcept C119857082 @default.
- W4297261054 hasConcept C142724271 @default.
- W4297261054 hasConcept C153180895 @default.
- W4297261054 hasConcept C154945302 @default.
- W4297261054 hasConcept C2779134260 @default.
- W4297261054 hasConcept C3008058167 @default.
- W4297261054 hasConcept C41008148 @default.
- W4297261054 hasConcept C50644808 @default.
- W4297261054 hasConcept C524204448 @default.
- W4297261054 hasConcept C71924100 @default.
- W4297261054 hasConcept C81363708 @default.
- W4297261054 hasConcept C94124525 @default.
- W4297261054 hasConceptScore W4297261054C108583219 @default.
- W4297261054 hasConceptScore W4297261054C119857082 @default.
- W4297261054 hasConceptScore W4297261054C142724271 @default.
- W4297261054 hasConceptScore W4297261054C153180895 @default.
- W4297261054 hasConceptScore W4297261054C154945302 @default.
- W4297261054 hasConceptScore W4297261054C2779134260 @default.
- W4297261054 hasConceptScore W4297261054C3008058167 @default.
- W4297261054 hasConceptScore W4297261054C41008148 @default.
- W4297261054 hasConceptScore W4297261054C50644808 @default.
- W4297261054 hasConceptScore W4297261054C524204448 @default.
- W4297261054 hasConceptScore W4297261054C71924100 @default.
- W4297261054 hasConceptScore W4297261054C81363708 @default.
- W4297261054 hasConceptScore W4297261054C94124525 @default.
- W4297261054 hasLocation W42972610541 @default.
- W4297261054 hasLocation W42972610542 @default.
- W4297261054 hasOpenAccess W4297261054 @default.
- W4297261054 hasPrimaryLocation W42972610541 @default.
- W4297261054 hasRelatedWork W2009678853 @default.
- W4297261054 hasRelatedWork W2337926734 @default.
- W4297261054 hasRelatedWork W2732542196 @default.
- W4297261054 hasRelatedWork W2738221750 @default.
- W4297261054 hasRelatedWork W2963958939 @default.
- W4297261054 hasRelatedWork W3021430260 @default.
- W4297261054 hasRelatedWork W4311257506 @default.
- W4297261054 hasRelatedWork W4319994054 @default.
- W4297261054 hasRelatedWork W4320802194 @default.
- W4297261054 hasRelatedWork W564581980 @default.
- W4297261054 hasVolume "103" @default.
- W4297261054 isParatext "false" @default.
- W4297261054 isRetracted "false" @default.
- W4297261054 workType "article" @default.