Matches in SemOpenAlex for { <https://semopenalex.org/work/W4297263419> ?p ?o ?g. }
- W4297263419 endingPage "2098" @default.
- W4297263419 startingPage "2084" @default.
- W4297263419 abstract "Machine learning is becoming increasingly more important in the field of force field development. Never has it been more vital to have chemically accurate machine learning potentials because force fields become more sophisticated and their applications expand. In this study a method for developing chemically accurate Gaussian process regression models is demonstrated for an increasingly complex set of molecules. This work is an extension to previous work showing the progression of the active learning technique in producing more accurate models in much less CPU time than ever before. The per-atom active learning approach has unlocked the potential to generate chemically accurate models for molecules such as peptide-capped glycine." @default.
- W4297263419 created "2022-09-28" @default.
- W4297263419 creator A5024957621 @default.
- W4297263419 creator A5078177431 @default.
- W4297263419 date "2022-09-27" @default.
- W4297263419 modified "2023-10-01" @default.
- W4297263419 title "Producing chemically accurate atomic Gaussian process regression models by active learning for molecular simulation" @default.
- W4297263419 cites W1510052597 @default.
- W4297263419 cites W1991208595 @default.
- W4297263419 cites W2025444507 @default.
- W4297263419 cites W2061179540 @default.
- W4297263419 cites W2063007245 @default.
- W4297263419 cites W2064919337 @default.
- W4297263419 cites W2083415705 @default.
- W4297263419 cites W2087984561 @default.
- W4297263419 cites W2092157292 @default.
- W4297263419 cites W2092196700 @default.
- W4297263419 cites W2100052098 @default.
- W4297263419 cites W2152195021 @default.
- W4297263419 cites W2161735080 @default.
- W4297263419 cites W2165618135 @default.
- W4297263419 cites W2181561360 @default.
- W4297263419 cites W2234602429 @default.
- W4297263419 cites W2316524229 @default.
- W4297263419 cites W2318880976 @default.
- W4297263419 cites W2521343341 @default.
- W4297263419 cites W2623242234 @default.
- W4297263419 cites W2769775068 @default.
- W4297263419 cites W2785289892 @default.
- W4297263419 cites W2785813126 @default.
- W4297263419 cites W2788484525 @default.
- W4297263419 cites W2800697076 @default.
- W4297263419 cites W2890961624 @default.
- W4297263419 cites W2902788714 @default.
- W4297263419 cites W2922733622 @default.
- W4297263419 cites W2943626891 @default.
- W4297263419 cites W2946418155 @default.
- W4297263419 cites W2962660969 @default.
- W4297263419 cites W2968756798 @default.
- W4297263419 cites W2999876197 @default.
- W4297263419 cites W3012230641 @default.
- W4297263419 cites W3027308092 @default.
- W4297263419 cites W3032530299 @default.
- W4297263419 cites W3046503435 @default.
- W4297263419 cites W3047511151 @default.
- W4297263419 cites W3084211373 @default.
- W4297263419 cites W3098509317 @default.
- W4297263419 cites W3099276598 @default.
- W4297263419 cites W3104884436 @default.
- W4297263419 cites W3119329252 @default.
- W4297263419 cites W3121252325 @default.
- W4297263419 cites W3133931590 @default.
- W4297263419 cites W3141927472 @default.
- W4297263419 cites W3158948853 @default.
- W4297263419 cites W3185227028 @default.
- W4297263419 cites W3189164715 @default.
- W4297263419 cites W4210988300 @default.
- W4297263419 cites W4297263419 @default.
- W4297263419 doi "https://doi.org/10.1002/jcc.27006" @default.
- W4297263419 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36165338" @default.
- W4297263419 hasPublicationYear "2022" @default.
- W4297263419 type Work @default.
- W4297263419 citedByCount "5" @default.
- W4297263419 countsByYear W42972634192022 @default.
- W4297263419 countsByYear W42972634192023 @default.
- W4297263419 crossrefType "journal-article" @default.
- W4297263419 hasAuthorship W4297263419A5024957621 @default.
- W4297263419 hasAuthorship W4297263419A5078177431 @default.
- W4297263419 hasBestOaLocation W42972634191 @default.
- W4297263419 hasConcept C105795698 @default.
- W4297263419 hasConcept C10803110 @default.
- W4297263419 hasConcept C111919701 @default.
- W4297263419 hasConcept C119857082 @default.
- W4297263419 hasConcept C147597530 @default.
- W4297263419 hasConcept C154945302 @default.
- W4297263419 hasConcept C163716315 @default.
- W4297263419 hasConcept C177264268 @default.
- W4297263419 hasConcept C185592680 @default.
- W4297263419 hasConcept C186060115 @default.
- W4297263419 hasConcept C199360897 @default.
- W4297263419 hasConcept C202444582 @default.
- W4297263419 hasConcept C33923547 @default.
- W4297263419 hasConcept C41008148 @default.
- W4297263419 hasConcept C61326573 @default.
- W4297263419 hasConcept C77967617 @default.
- W4297263419 hasConcept C81692654 @default.
- W4297263419 hasConcept C83546350 @default.
- W4297263419 hasConcept C86803240 @default.
- W4297263419 hasConcept C9652623 @default.
- W4297263419 hasConcept C98045186 @default.
- W4297263419 hasConceptScore W4297263419C105795698 @default.
- W4297263419 hasConceptScore W4297263419C10803110 @default.
- W4297263419 hasConceptScore W4297263419C111919701 @default.
- W4297263419 hasConceptScore W4297263419C119857082 @default.
- W4297263419 hasConceptScore W4297263419C147597530 @default.
- W4297263419 hasConceptScore W4297263419C154945302 @default.
- W4297263419 hasConceptScore W4297263419C163716315 @default.
- W4297263419 hasConceptScore W4297263419C177264268 @default.