Matches in SemOpenAlex for { <https://semopenalex.org/work/W4297268477> ?p ?o ?g. }
Showing items 1 to 85 of
85
with 100 items per page.
- W4297268477 endingPage "552" @default.
- W4297268477 startingPage "552" @default.
- W4297268477 abstract "The reverse design of solid propellant grain for a performance-matching goal, one of the most challenging directions of the solid rocket motor designing work, is limited by the traditional semi-empirical parameter-driven optimization methods based on some predefined grain configurations. Grain designers call for a new method that can automatically provide brand-new grain shapes beyond the traditional ones. In this work, a shape optimization method based on the evolutionary neural network is proposed to achieve the reverse design of two-dimensional (2D) grains. Firstly, the modified ellipse-form eikonal equation is solved by using the finite element method to realize the burn-back analysis of 2D grains in any shape on a fixed unstructured mesh. Then, the neural network is introduced to determine the spatial distribution of the propellant to define the grain shape. The hyperparameters of the network are continuously evolved with the aid of the genetic algorithm. Finally, the optimal grain shape that matches the performance goal most is obtained. The method is verified in different scenarios. The result shows that the design can precisely match the given pressure-time curve of star grains and slotted-tube grains. Furthermore, the method can automatically evolve a new dendritic-shaped grain that matches the given dual-thrust pressure-time curve. Since the reverse design uses the concept of shape optimization, it does not require any pre-selection of the grain shape, and the designers shall be free from defining different kinds of geometric parameters for specific grain configurations. Consequently, the method has the potential to apply in the reconstruction of an actual grain and the conceptual design of innovative grain configurations." @default.
- W4297268477 created "2022-09-28" @default.
- W4297268477 creator A5012486505 @default.
- W4297268477 creator A5059833206 @default.
- W4297268477 creator A5061715820 @default.
- W4297268477 creator A5088595330 @default.
- W4297268477 date "2022-09-26" @default.
- W4297268477 modified "2023-09-26" @default.
- W4297268477 title "Reverse Design of Solid Propellant Grain for a Performance-Matching Goal: Shape Optimization via Evolutionary Neural Network" @default.
- W4297268477 cites W1964879480 @default.
- W4297268477 cites W1982497443 @default.
- W4297268477 cites W1986011329 @default.
- W4297268477 cites W1989723667 @default.
- W4297268477 cites W1992730525 @default.
- W4297268477 cites W2020003164 @default.
- W4297268477 cites W2047669831 @default.
- W4297268477 cites W2092801729 @default.
- W4297268477 cites W2103496339 @default.
- W4297268477 cites W2112323489 @default.
- W4297268477 cites W2132034927 @default.
- W4297268477 cites W2137983211 @default.
- W4297268477 cites W2142300813 @default.
- W4297268477 cites W2147963686 @default.
- W4297268477 cites W2220999736 @default.
- W4297268477 cites W2324953005 @default.
- W4297268477 cites W2885372124 @default.
- W4297268477 cites W2894672147 @default.
- W4297268477 cites W2948883340 @default.
- W4297268477 cites W3105656517 @default.
- W4297268477 doi "https://doi.org/10.3390/aerospace9100552" @default.
- W4297268477 hasPublicationYear "2022" @default.
- W4297268477 type Work @default.
- W4297268477 citedByCount "1" @default.
- W4297268477 countsByYear W42972684772022 @default.
- W4297268477 crossrefType "journal-article" @default.
- W4297268477 hasAuthorship W4297268477A5012486505 @default.
- W4297268477 hasAuthorship W4297268477A5059833206 @default.
- W4297268477 hasAuthorship W4297268477A5061715820 @default.
- W4297268477 hasAuthorship W4297268477A5088595330 @default.
- W4297268477 hasBestOaLocation W42972684771 @default.
- W4297268477 hasConcept C11413529 @default.
- W4297268477 hasConcept C126255220 @default.
- W4297268477 hasConcept C127413603 @default.
- W4297268477 hasConcept C135628077 @default.
- W4297268477 hasConcept C146978453 @default.
- W4297268477 hasConcept C154945302 @default.
- W4297268477 hasConcept C29513896 @default.
- W4297268477 hasConcept C33923547 @default.
- W4297268477 hasConcept C41008148 @default.
- W4297268477 hasConcept C50644808 @default.
- W4297268477 hasConcept C66938386 @default.
- W4297268477 hasConcept C76737569 @default.
- W4297268477 hasConceptScore W4297268477C11413529 @default.
- W4297268477 hasConceptScore W4297268477C126255220 @default.
- W4297268477 hasConceptScore W4297268477C127413603 @default.
- W4297268477 hasConceptScore W4297268477C135628077 @default.
- W4297268477 hasConceptScore W4297268477C146978453 @default.
- W4297268477 hasConceptScore W4297268477C154945302 @default.
- W4297268477 hasConceptScore W4297268477C29513896 @default.
- W4297268477 hasConceptScore W4297268477C33923547 @default.
- W4297268477 hasConceptScore W4297268477C41008148 @default.
- W4297268477 hasConceptScore W4297268477C50644808 @default.
- W4297268477 hasConceptScore W4297268477C66938386 @default.
- W4297268477 hasConceptScore W4297268477C76737569 @default.
- W4297268477 hasIssue "10" @default.
- W4297268477 hasLocation W42972684771 @default.
- W4297268477 hasLocation W42972684772 @default.
- W4297268477 hasOpenAccess W4297268477 @default.
- W4297268477 hasPrimaryLocation W42972684771 @default.
- W4297268477 hasRelatedWork W1755804492 @default.
- W4297268477 hasRelatedWork W2040937631 @default.
- W4297268477 hasRelatedWork W2070373090 @default.
- W4297268477 hasRelatedWork W2110349507 @default.
- W4297268477 hasRelatedWork W2370200601 @default.
- W4297268477 hasRelatedWork W2380313759 @default.
- W4297268477 hasRelatedWork W2386387936 @default.
- W4297268477 hasRelatedWork W2386767533 @default.
- W4297268477 hasRelatedWork W2392110728 @default.
- W4297268477 hasRelatedWork W4361019886 @default.
- W4297268477 hasVolume "9" @default.
- W4297268477 isParatext "false" @default.
- W4297268477 isRetracted "false" @default.
- W4297268477 workType "article" @default.