Matches in SemOpenAlex for { <https://semopenalex.org/work/W4297268520> ?p ?o ?g. }
- W4297268520 abstract "Water is essential to improving social equity, promoting just economic development and protecting the function of the Earth system. It is therefore important to have access to credible models of water consumption, so as to ensure that water utilities can adequately supply water to meet the growing demand. Within the literature, there are a variety of models, but often these models evaluate the water consumption at aggregate scales (e.g., city or regional), thus overlooking intra-city differences. Conversely, the models that evaluate intra-city differences tend to rely heavily on one or two sources of quantitative data (e.g., climate variables or demographics), potentially missing key cultural aspects that may act as confounding factors in quantitative models. Here, we present a novel mixed-methods approach to predict intra-city residential water consumption patterns by integrating climate and demographic data, and by incorporating social norm data to aid the interpretation of model results. Using Indianapolis, Indiana as a test case, we show the value in adopting a more integrative approach to modeling residential water consumption. In particular, we leverage qualitative interview data to interpret the results from a predictive model based on a state-of-the-art machine learning algorithm. This integrative approach provides community-specific interpretations of model results that would otherwise not be observed by considering demographics alone. Ultimately, the results demonstrate the value and importance of such approaches when working on complex problems." @default.
- W4297268520 created "2022-09-28" @default.
- W4297268520 creator A5026561220 @default.
- W4297268520 creator A5041667630 @default.
- W4297268520 creator A5049033428 @default.
- W4297268520 creator A5067162209 @default.
- W4297268520 date "2022-12-01" @default.
- W4297268520 modified "2023-10-16" @default.
- W4297268520 title "Improving the Interpretation of Data-Driven Water Consumption Models via the Use of Social Norms" @default.
- W4297268520 cites W1507231250 @default.
- W4297268520 cites W1889511477 @default.
- W4297268520 cites W1931776984 @default.
- W4297268520 cites W1983534546 @default.
- W4297268520 cites W1989758362 @default.
- W4297268520 cites W2009574904 @default.
- W4297268520 cites W2017007625 @default.
- W4297268520 cites W2028692216 @default.
- W4297268520 cites W2031027751 @default.
- W4297268520 cites W2045650768 @default.
- W4297268520 cites W2052116335 @default.
- W4297268520 cites W2081075178 @default.
- W4297268520 cites W2110125735 @default.
- W4297268520 cites W2112602938 @default.
- W4297268520 cites W2123160841 @default.
- W4297268520 cites W2123235859 @default.
- W4297268520 cites W2129660502 @default.
- W4297268520 cites W2142225512 @default.
- W4297268520 cites W2155261478 @default.
- W4297268520 cites W2165301409 @default.
- W4297268520 cites W2182844626 @default.
- W4297268520 cites W2228763601 @default.
- W4297268520 cites W2513247925 @default.
- W4297268520 cites W2557117995 @default.
- W4297268520 cites W2599347407 @default.
- W4297268520 cites W2606969123 @default.
- W4297268520 cites W2615972291 @default.
- W4297268520 cites W2728177298 @default.
- W4297268520 cites W2729647876 @default.
- W4297268520 cites W2754799758 @default.
- W4297268520 cites W2765676269 @default.
- W4297268520 cites W2765714724 @default.
- W4297268520 cites W2766330194 @default.
- W4297268520 cites W2787894218 @default.
- W4297268520 cites W2791114900 @default.
- W4297268520 cites W2792181203 @default.
- W4297268520 cites W2794843325 @default.
- W4297268520 cites W2806422312 @default.
- W4297268520 cites W2892860709 @default.
- W4297268520 cites W2911369981 @default.
- W4297268520 cites W2911964244 @default.
- W4297268520 cites W2949152033 @default.
- W4297268520 cites W2949595642 @default.
- W4297268520 cites W2955368285 @default.
- W4297268520 cites W2974234787 @default.
- W4297268520 cites W2998844922 @default.
- W4297268520 cites W3009450247 @default.
- W4297268520 cites W3016953781 @default.
- W4297268520 cites W3023639742 @default.
- W4297268520 cites W3041008695 @default.
- W4297268520 cites W3041366542 @default.
- W4297268520 cites W3092226984 @default.
- W4297268520 cites W3121452939 @default.
- W4297268520 cites W3127475546 @default.
- W4297268520 cites W3161882917 @default.
- W4297268520 doi "https://doi.org/10.1061/(asce)wr.1943-5452.0001611" @default.
- W4297268520 hasPublicationYear "2022" @default.
- W4297268520 type Work @default.
- W4297268520 citedByCount "0" @default.
- W4297268520 crossrefType "journal-article" @default.
- W4297268520 hasAuthorship W4297268520A5026561220 @default.
- W4297268520 hasAuthorship W4297268520A5041667630 @default.
- W4297268520 hasAuthorship W4297268520A5049033428 @default.
- W4297268520 hasAuthorship W4297268520A5067162209 @default.
- W4297268520 hasConcept C119857082 @default.
- W4297268520 hasConcept C127413603 @default.
- W4297268520 hasConcept C134560507 @default.
- W4297268520 hasConcept C136197465 @default.
- W4297268520 hasConcept C144024400 @default.
- W4297268520 hasConcept C149207113 @default.
- W4297268520 hasConcept C149782125 @default.
- W4297268520 hasConcept C153083717 @default.
- W4297268520 hasConcept C154945302 @default.
- W4297268520 hasConcept C162324750 @default.
- W4297268520 hasConcept C18903297 @default.
- W4297268520 hasConcept C2522767166 @default.
- W4297268520 hasConcept C30772137 @default.
- W4297268520 hasConcept C36289849 @default.
- W4297268520 hasConcept C41008148 @default.
- W4297268520 hasConcept C86803240 @default.
- W4297268520 hasConcept C87156501 @default.
- W4297268520 hasConcept C87717796 @default.
- W4297268520 hasConcept C97053079 @default.
- W4297268520 hasConceptScore W4297268520C119857082 @default.
- W4297268520 hasConceptScore W4297268520C127413603 @default.
- W4297268520 hasConceptScore W4297268520C134560507 @default.
- W4297268520 hasConceptScore W4297268520C136197465 @default.
- W4297268520 hasConceptScore W4297268520C144024400 @default.
- W4297268520 hasConceptScore W4297268520C149207113 @default.
- W4297268520 hasConceptScore W4297268520C149782125 @default.
- W4297268520 hasConceptScore W4297268520C153083717 @default.