Matches in SemOpenAlex for { <https://semopenalex.org/work/W4297268521> ?p ?o ?g. }
- W4297268521 endingPage "555" @default.
- W4297268521 startingPage "555" @default.
- W4297268521 abstract "The aircraft anti-skid braking system (AABS) plays an important role in aircraft taking off, taxiing, and safe landing. In addition to the disturbances from the complex runway environment, potential component faults, such as actuators faults, can also reduce the safety and reliability of AABS. To meet the increasing performance requirements of AABS under fault and disturbance conditions, a novel reconfiguration controller based on linear active disturbance rejection control combined with deep reinforcement learning was proposed in this paper. The proposed controller treated component faults, external perturbations, and measurement noise as the total disturbances. The twin delayed deep deterministic policy gradient algorithm (TD3) was introduced to realize the parameter self-adjustments of both the extended state observer and the state error feedback law. The action space, state space, reward function, and network structure for the algorithm training were properly designed, so that the total disturbances could be estimated and compensated for more accurately. The simulation results validated the environmental adaptability and robustness of the proposed reconfiguration controller." @default.
- W4297268521 created "2022-09-28" @default.
- W4297268521 creator A5000801736 @default.
- W4297268521 creator A5001637611 @default.
- W4297268521 creator A5043361590 @default.
- W4297268521 creator A5064550844 @default.
- W4297268521 creator A5068303855 @default.
- W4297268521 creator A5073413192 @default.
- W4297268521 creator A5078024000 @default.
- W4297268521 creator A5090991488 @default.
- W4297268521 date "2022-09-26" @default.
- W4297268521 modified "2023-10-16" @default.
- W4297268521 title "Application of Deep Reinforcement Learning in Reconfiguration Control of Aircraft Anti-Skid Braking System" @default.
- W4297268521 cites W1970744534 @default.
- W4297268521 cites W1979278823 @default.
- W4297268521 cites W1985212389 @default.
- W4297268521 cites W2000854911 @default.
- W4297268521 cites W2024861863 @default.
- W4297268521 cites W2027758424 @default.
- W4297268521 cites W2083202063 @default.
- W4297268521 cites W2087050671 @default.
- W4297268521 cites W2135493101 @default.
- W4297268521 cites W2139494503 @default.
- W4297268521 cites W2142758015 @default.
- W4297268521 cites W2142886492 @default.
- W4297268521 cites W2152640207 @default.
- W4297268521 cites W2181726741 @default.
- W4297268521 cites W2293043513 @default.
- W4297268521 cites W2317535379 @default.
- W4297268521 cites W2323571659 @default.
- W4297268521 cites W2328146394 @default.
- W4297268521 cites W2545736105 @default.
- W4297268521 cites W2751853555 @default.
- W4297268521 cites W2754052581 @default.
- W4297268521 cites W2759684792 @default.
- W4297268521 cites W2809421027 @default.
- W4297268521 cites W2897661175 @default.
- W4297268521 cites W2944305322 @default.
- W4297268521 cites W2983277893 @default.
- W4297268521 cites W3004497009 @default.
- W4297268521 cites W3023586494 @default.
- W4297268521 cites W3027032642 @default.
- W4297268521 cites W3143096262 @default.
- W4297268521 cites W3146267898 @default.
- W4297268521 cites W3195166426 @default.
- W4297268521 cites W3214998741 @default.
- W4297268521 cites W4225856133 @default.
- W4297268521 cites W4528758 @default.
- W4297268521 doi "https://doi.org/10.3390/aerospace9100555" @default.
- W4297268521 hasPublicationYear "2022" @default.
- W4297268521 type Work @default.
- W4297268521 citedByCount "1" @default.
- W4297268521 countsByYear W42972685212023 @default.
- W4297268521 crossrefType "journal-article" @default.
- W4297268521 hasAuthorship W4297268521A5000801736 @default.
- W4297268521 hasAuthorship W4297268521A5001637611 @default.
- W4297268521 hasAuthorship W4297268521A5043361590 @default.
- W4297268521 hasAuthorship W4297268521A5064550844 @default.
- W4297268521 hasAuthorship W4297268521A5068303855 @default.
- W4297268521 hasAuthorship W4297268521A5073413192 @default.
- W4297268521 hasAuthorship W4297268521A5078024000 @default.
- W4297268521 hasAuthorship W4297268521A5090991488 @default.
- W4297268521 hasBestOaLocation W42972685211 @default.
- W4297268521 hasConcept C104317684 @default.
- W4297268521 hasConcept C119701452 @default.
- W4297268521 hasConcept C120314980 @default.
- W4297268521 hasConcept C127413603 @default.
- W4297268521 hasConcept C133731056 @default.
- W4297268521 hasConcept C149635348 @default.
- W4297268521 hasConcept C152745839 @default.
- W4297268521 hasConcept C154945302 @default.
- W4297268521 hasConcept C166957645 @default.
- W4297268521 hasConcept C172707124 @default.
- W4297268521 hasConcept C185592680 @default.
- W4297268521 hasConcept C203479927 @default.
- W4297268521 hasConcept C2775924081 @default.
- W4297268521 hasConcept C41008148 @default.
- W4297268521 hasConcept C47446073 @default.
- W4297268521 hasConcept C55493867 @default.
- W4297268521 hasConcept C63479239 @default.
- W4297268521 hasConcept C63540848 @default.
- W4297268521 hasConcept C6557445 @default.
- W4297268521 hasConcept C78519656 @default.
- W4297268521 hasConcept C81155309 @default.
- W4297268521 hasConcept C86803240 @default.
- W4297268521 hasConcept C94296324 @default.
- W4297268521 hasConcept C95457728 @default.
- W4297268521 hasConcept C97541855 @default.
- W4297268521 hasConceptScore W4297268521C104317684 @default.
- W4297268521 hasConceptScore W4297268521C119701452 @default.
- W4297268521 hasConceptScore W4297268521C120314980 @default.
- W4297268521 hasConceptScore W4297268521C127413603 @default.
- W4297268521 hasConceptScore W4297268521C133731056 @default.
- W4297268521 hasConceptScore W4297268521C149635348 @default.
- W4297268521 hasConceptScore W4297268521C152745839 @default.
- W4297268521 hasConceptScore W4297268521C154945302 @default.
- W4297268521 hasConceptScore W4297268521C166957645 @default.
- W4297268521 hasConceptScore W4297268521C172707124 @default.