Matches in SemOpenAlex for { <https://semopenalex.org/work/W4297268543> ?p ?o ?g. }
- W4297268543 endingPage "2318" @default.
- W4297268543 startingPage "2318" @default.
- W4297268543 abstract "Rapid and accurate crop chlorophyll content estimation is crucial for guiding field management and improving crop yields. This study explored the potential for potato chlorophyll content estimation based on unmanned aerial vehicle (UAV) multispectral imagery. To search the optimal estimation method, three parts of research were conducted as following. First, a combination of support vector machines (SVM) and a gaussian mixture model (GMM) thresholding method was proposed to estimate fractional vegetation cover (FVC) during the potato growing period, and the proposed method produced efficient estimates of FVC; among all the selected vegetation indices (VIs), the soil adjusted vegetation index (SAVI) had the highest accuracy. Second, the recursive feature elimination (RFE) algorithm was utilized to screen the VIs and texture features derived from multispectral images: three Vis, including modified simple ratio (MSR), ratio vegetation index (RVI) and normalized difference vegetation index (NDVI); three texture features, including correlation in the NIR band (corr-NIR), correlation in the red-edge band (corr-Red-edge) and homogeneity in the NIR band (hom-NIR), showed higher contribution to chlorophyll content estimation. Finally, a stacking model was constructed with K-Nearest Neighbor (KNN), a light gradient boosting machine (light-GBM), SVM algorithm as the base model and linear fitting as the metamodel, and four machine learning algorithms (SVM, KNN, light-GBM and stacking) were used to build the chlorophyll content estimation model suitable for different growing seasons. The results were: (1) The performance of the estimation model could be improved based on both VIs and texture features over using single-type features, and the stacking algorithm yielded the highest estimation accuracy with an R2 value of 0.694 and an RMSE value of 0.553; (2) When FVC was added, the estimation model accuracy was further improved, and the stacking algorithm also produced the highest estimation accuracy with R2 value of 0.739, RMSE value of 0.511 (3) When comparing modeling algorithms, stacking algorithms had greater advantages in the estimation chlorophyll content with potato plants than using single machine learning algorithms. This study indicates that taking into account the combination of VIs reflecting spectral characteristics, texture features reflecting spatial information and the FVC reflecting canopy structure properties can accomplish higher chlorophyll content estimation accuracy, and the stacking algorithm can integrate the advantages of a single machine learning model, with great potential for estimation of potato chlorophyll content." @default.
- W4297268543 created "2022-09-28" @default.
- W4297268543 creator A5004514067 @default.
- W4297268543 creator A5034529815 @default.
- W4297268543 creator A5039204587 @default.
- W4297268543 creator A5052616893 @default.
- W4297268543 creator A5068722887 @default.
- W4297268543 creator A5075947906 @default.
- W4297268543 creator A5082857859 @default.
- W4297268543 date "2022-09-27" @default.
- W4297268543 modified "2023-10-05" @default.
- W4297268543 title "Estimation of Potato Chlorophyll Content from UAV Multispectral Images with Stacking Ensemble Algorithm" @default.
- W4297268543 cites W1964217023 @default.
- W4297268543 cites W1988998717 @default.
- W4297268543 cites W2036003376 @default.
- W4297268543 cites W2039952872 @default.
- W4297268543 cites W2044465660 @default.
- W4297268543 cites W2052700773 @default.
- W4297268543 cites W2079842406 @default.
- W4297268543 cites W2295297800 @default.
- W4297268543 cites W2394911398 @default.
- W4297268543 cites W2594195678 @default.
- W4297268543 cites W2616404850 @default.
- W4297268543 cites W2737333684 @default.
- W4297268543 cites W2771321168 @default.
- W4297268543 cites W2790131776 @default.
- W4297268543 cites W2807400690 @default.
- W4297268543 cites W2810533430 @default.
- W4297268543 cites W2889648359 @default.
- W4297268543 cites W2904957358 @default.
- W4297268543 cites W2909736607 @default.
- W4297268543 cites W2923499128 @default.
- W4297268543 cites W2923833971 @default.
- W4297268543 cites W2945147101 @default.
- W4297268543 cites W2951986078 @default.
- W4297268543 cites W2999103932 @default.
- W4297268543 cites W3000336227 @default.
- W4297268543 cites W3012400249 @default.
- W4297268543 cites W3025950539 @default.
- W4297268543 cites W3028231515 @default.
- W4297268543 cites W3046281038 @default.
- W4297268543 cites W3060826539 @default.
- W4297268543 cites W3083611323 @default.
- W4297268543 cites W3084417673 @default.
- W4297268543 cites W3106350100 @default.
- W4297268543 cites W3120124794 @default.
- W4297268543 cites W3142772534 @default.
- W4297268543 cites W3173953538 @default.
- W4297268543 cites W3182315975 @default.
- W4297268543 cites W3198108106 @default.
- W4297268543 cites W3207183170 @default.
- W4297268543 cites W4205591460 @default.
- W4297268543 cites W4210994241 @default.
- W4297268543 cites W4221038349 @default.
- W4297268543 cites W4295206955 @default.
- W4297268543 cites W51106753 @default.
- W4297268543 doi "https://doi.org/10.3390/agronomy12102318" @default.
- W4297268543 hasPublicationYear "2022" @default.
- W4297268543 type Work @default.
- W4297268543 citedByCount "7" @default.
- W4297268543 countsByYear W42972685432022 @default.
- W4297268543 countsByYear W42972685432023 @default.
- W4297268543 crossrefType "journal-article" @default.
- W4297268543 hasAuthorship W4297268543A5004514067 @default.
- W4297268543 hasAuthorship W4297268543A5034529815 @default.
- W4297268543 hasAuthorship W4297268543A5039204587 @default.
- W4297268543 hasAuthorship W4297268543A5052616893 @default.
- W4297268543 hasAuthorship W4297268543A5068722887 @default.
- W4297268543 hasAuthorship W4297268543A5075947906 @default.
- W4297268543 hasAuthorship W4297268543A5082857859 @default.
- W4297268543 hasBestOaLocation W42972685431 @default.
- W4297268543 hasConcept C11413529 @default.
- W4297268543 hasConcept C12267149 @default.
- W4297268543 hasConcept C153180895 @default.
- W4297268543 hasConcept C1549246 @default.
- W4297268543 hasConcept C154945302 @default.
- W4297268543 hasConcept C159078339 @default.
- W4297268543 hasConcept C173163844 @default.
- W4297268543 hasConcept C205649164 @default.
- W4297268543 hasConcept C25989453 @default.
- W4297268543 hasConcept C2776388979 @default.
- W4297268543 hasConcept C33923547 @default.
- W4297268543 hasConcept C41008148 @default.
- W4297268543 hasConcept C62649853 @default.
- W4297268543 hasConcept C6557445 @default.
- W4297268543 hasConcept C86803240 @default.
- W4297268543 hasConceptScore W4297268543C11413529 @default.
- W4297268543 hasConceptScore W4297268543C12267149 @default.
- W4297268543 hasConceptScore W4297268543C153180895 @default.
- W4297268543 hasConceptScore W4297268543C1549246 @default.
- W4297268543 hasConceptScore W4297268543C154945302 @default.
- W4297268543 hasConceptScore W4297268543C159078339 @default.
- W4297268543 hasConceptScore W4297268543C173163844 @default.
- W4297268543 hasConceptScore W4297268543C205649164 @default.
- W4297268543 hasConceptScore W4297268543C25989453 @default.
- W4297268543 hasConceptScore W4297268543C2776388979 @default.
- W4297268543 hasConceptScore W4297268543C33923547 @default.
- W4297268543 hasConceptScore W4297268543C41008148 @default.