Matches in SemOpenAlex for { <https://semopenalex.org/work/W4297268596> ?p ?o ?g. }
- W4297268596 endingPage "9710" @default.
- W4297268596 startingPage "9710" @default.
- W4297268596 abstract "This paper presents a system for medical image diagnosis that uses transfer learning (TL) and feature selection techniques. The main aim of TL on pre-trained models such as MobileNetV3 is to extract features from raw images. Here, a novel feature selection optimization algorithm called the Artificial Hummingbird Algorithm based on Aquila Optimization (AHA-AO) is proposed. The AHA-AO is used to select only the most relevant features and ensure the improvement of the overall model classification. Our methodology was evaluated using four datasets, namely, ISIC-2016, PH2, Chest-XRay, and Blood-Cell. We compared the proposed feature selection algorithm with five of the most popular feature selection optimization algorithms. We obtained an accuracy of 87.30% for the ISIC-2016 dataset, 97.50% for the PH2 dataset, 86.90% for the Chest-XRay dataset, and 88.60% for the Blood-cell dataset. The AHA-AO outperformed the other optimization techniques. Moreover, the developed AHA-AO was faster than the other feature selection models during the process of determining the relevant features. The proposed feature selection algorithm successfully improved the performance and the speed of the overall deep learning models." @default.
- W4297268596 created "2022-09-28" @default.
- W4297268596 creator A5011155311 @default.
- W4297268596 creator A5016157034 @default.
- W4297268596 creator A5052265483 @default.
- W4297268596 creator A5057217204 @default.
- W4297268596 creator A5071730584 @default.
- W4297268596 date "2022-09-27" @default.
- W4297268596 modified "2023-10-12" @default.
- W4297268596 title "AHA-AO: Artificial Hummingbird Algorithm with Aquila Optimization for Efficient Feature Selection in Medical Image Classification" @default.
- W4297268596 cites W2027423900 @default.
- W4297268596 cites W2426942631 @default.
- W4297268596 cites W2551596518 @default.
- W4297268596 cites W2564782580 @default.
- W4297268596 cites W2581082771 @default.
- W4297268596 cites W2701556738 @default.
- W4297268596 cites W2780611063 @default.
- W4297268596 cites W2796345789 @default.
- W4297268596 cites W2883141290 @default.
- W4297268596 cites W2888442043 @default.
- W4297268596 cites W2916275175 @default.
- W4297268596 cites W2916845318 @default.
- W4297268596 cites W2943900171 @default.
- W4297268596 cites W2954166083 @default.
- W4297268596 cites W2955950556 @default.
- W4297268596 cites W2962834855 @default.
- W4297268596 cites W2968857032 @default.
- W4297268596 cites W2986609444 @default.
- W4297268596 cites W2998957378 @default.
- W4297268596 cites W3015390149 @default.
- W4297268596 cites W3028737903 @default.
- W4297268596 cites W3028742747 @default.
- W4297268596 cites W3030918629 @default.
- W4297268596 cites W3087300877 @default.
- W4297268596 cites W3087421454 @default.
- W4297268596 cites W3101294892 @default.
- W4297268596 cites W3124174388 @default.
- W4297268596 cites W3126296655 @default.
- W4297268596 cites W3133091557 @default.
- W4297268596 cites W3139484821 @default.
- W4297268596 cites W3145539437 @default.
- W4297268596 cites W3152635830 @default.
- W4297268596 cites W3157259822 @default.
- W4297268596 cites W3171873561 @default.
- W4297268596 cites W3184179291 @default.
- W4297268596 cites W3203056505 @default.
- W4297268596 cites W3205746738 @default.
- W4297268596 cites W3207548384 @default.
- W4297268596 cites W3211317523 @default.
- W4297268596 cites W3211434935 @default.
- W4297268596 cites W3214813820 @default.
- W4297268596 cites W3216717225 @default.
- W4297268596 cites W4210534168 @default.
- W4297268596 cites W4210744365 @default.
- W4297268596 cites W4212859923 @default.
- W4297268596 cites W4214703147 @default.
- W4297268596 cites W4223432406 @default.
- W4297268596 cites W4223501034 @default.
- W4297268596 cites W4226061429 @default.
- W4297268596 cites W4283276102 @default.
- W4297268596 cites W4283692374 @default.
- W4297268596 cites W4284886685 @default.
- W4297268596 doi "https://doi.org/10.3390/app12199710" @default.
- W4297268596 hasPublicationYear "2022" @default.
- W4297268596 type Work @default.
- W4297268596 citedByCount "6" @default.
- W4297268596 countsByYear W42972685962023 @default.
- W4297268596 crossrefType "journal-article" @default.
- W4297268596 hasAuthorship W4297268596A5011155311 @default.
- W4297268596 hasAuthorship W4297268596A5016157034 @default.
- W4297268596 hasAuthorship W4297268596A5052265483 @default.
- W4297268596 hasAuthorship W4297268596A5057217204 @default.
- W4297268596 hasAuthorship W4297268596A5071730584 @default.
- W4297268596 hasBestOaLocation W42972685961 @default.
- W4297268596 hasConcept C119857082 @default.
- W4297268596 hasConcept C126255220 @default.
- W4297268596 hasConcept C138885662 @default.
- W4297268596 hasConcept C148483581 @default.
- W4297268596 hasConcept C153180895 @default.
- W4297268596 hasConcept C154945302 @default.
- W4297268596 hasConcept C18903297 @default.
- W4297268596 hasConcept C2776401178 @default.
- W4297268596 hasConcept C2780610420 @default.
- W4297268596 hasConcept C2987595161 @default.
- W4297268596 hasConcept C33923547 @default.
- W4297268596 hasConcept C41008148 @default.
- W4297268596 hasConcept C41895202 @default.
- W4297268596 hasConcept C81917197 @default.
- W4297268596 hasConcept C86803240 @default.
- W4297268596 hasConceptScore W4297268596C119857082 @default.
- W4297268596 hasConceptScore W4297268596C126255220 @default.
- W4297268596 hasConceptScore W4297268596C138885662 @default.
- W4297268596 hasConceptScore W4297268596C148483581 @default.
- W4297268596 hasConceptScore W4297268596C153180895 @default.
- W4297268596 hasConceptScore W4297268596C154945302 @default.
- W4297268596 hasConceptScore W4297268596C18903297 @default.
- W4297268596 hasConceptScore W4297268596C2776401178 @default.
- W4297268596 hasConceptScore W4297268596C2780610420 @default.