Matches in SemOpenAlex for { <https://semopenalex.org/work/W4297282411> ?p ?o ?g. }
- W4297282411 endingPage "108858" @default.
- W4297282411 startingPage "108858" @default.
- W4297282411 abstract "Global sensitivity analysis (GSA), particularly for Sobol index, is a powerful tool to quantify the variation of model response sourced from the uncertainty of input variables over the entire design space. However, GSA requires a large number of model evaluations to achieve satisfactory accuracy, which will lead to a great challenge in computational efforts when the model is expensive to be evaluated. To address this issue, an efficient method based on multi-fidelity Kriging (Cokriging) surrogate model is proposed. To this end, high dimensional model representation of Cokriging predictor is preformed to derive the analytical expressions of total and partial variances. Then, the sensitivity analysis is transformed into the computation of several one-dimensional integrals, which is beneficial to reduce the computational burden. Four examples are employed to validate the performance of the proposed method. The results demonstrate that Cokriging estimator is an efficient approach to yield promising accuracy and reduce computational costs in the sensitivity analysis." @default.
- W4297282411 created "2022-09-28" @default.
- W4297282411 creator A5035243580 @default.
- W4297282411 creator A5057489654 @default.
- W4297282411 creator A5063624788 @default.
- W4297282411 creator A5079613390 @default.
- W4297282411 creator A5089417256 @default.
- W4297282411 date "2023-01-01" @default.
- W4297282411 modified "2023-10-14" @default.
- W4297282411 title "An efficient multi-fidelity Kriging surrogate model-based method for global sensitivity analysis" @default.
- W4297282411 cites W1977046327 @default.
- W4297282411 cites W1994080277 @default.
- W4297282411 cites W2004132656 @default.
- W4297282411 cites W2029767409 @default.
- W4297282411 cites W2041202986 @default.
- W4297282411 cites W2045355467 @default.
- W4297282411 cites W2049774453 @default.
- W4297282411 cites W2063847981 @default.
- W4297282411 cites W2101589741 @default.
- W4297282411 cites W2106390386 @default.
- W4297282411 cites W2113117406 @default.
- W4297282411 cites W2113337191 @default.
- W4297282411 cites W2143193408 @default.
- W4297282411 cites W2164094775 @default.
- W4297282411 cites W2170464657 @default.
- W4297282411 cites W2338509686 @default.
- W4297282411 cites W2341416175 @default.
- W4297282411 cites W2416632929 @default.
- W4297282411 cites W2418610392 @default.
- W4297282411 cites W2510279142 @default.
- W4297282411 cites W2539112251 @default.
- W4297282411 cites W2579725522 @default.
- W4297282411 cites W2587346616 @default.
- W4297282411 cites W2744517292 @default.
- W4297282411 cites W2749552960 @default.
- W4297282411 cites W2766267279 @default.
- W4297282411 cites W2792766956 @default.
- W4297282411 cites W2794102850 @default.
- W4297282411 cites W2886135189 @default.
- W4297282411 cites W2920434758 @default.
- W4297282411 cites W2927575558 @default.
- W4297282411 cites W2929049077 @default.
- W4297282411 cites W2945396160 @default.
- W4297282411 cites W2963077925 @default.
- W4297282411 cites W2966482723 @default.
- W4297282411 cites W2998921148 @default.
- W4297282411 cites W2999699150 @default.
- W4297282411 cites W3008029510 @default.
- W4297282411 cites W3025640220 @default.
- W4297282411 cites W3031884545 @default.
- W4297282411 cites W3033121103 @default.
- W4297282411 cites W3080871233 @default.
- W4297282411 cites W3081996497 @default.
- W4297282411 cites W3157896191 @default.
- W4297282411 cites W3157983709 @default.
- W4297282411 cites W3165278892 @default.
- W4297282411 cites W3174465471 @default.
- W4297282411 cites W3195131664 @default.
- W4297282411 cites W3199932447 @default.
- W4297282411 cites W590241356 @default.
- W4297282411 cites W925742927 @default.
- W4297282411 doi "https://doi.org/10.1016/j.ress.2022.108858" @default.
- W4297282411 hasPublicationYear "2023" @default.
- W4297282411 type Work @default.
- W4297282411 citedByCount "8" @default.
- W4297282411 countsByYear W42972824112023 @default.
- W4297282411 crossrefType "journal-article" @default.
- W4297282411 hasAuthorship W4297282411A5035243580 @default.
- W4297282411 hasAuthorship W4297282411A5057489654 @default.
- W4297282411 hasAuthorship W4297282411A5063624788 @default.
- W4297282411 hasAuthorship W4297282411A5079613390 @default.
- W4297282411 hasAuthorship W4297282411A5089417256 @default.
- W4297282411 hasConcept C105795698 @default.
- W4297282411 hasConcept C11413529 @default.
- W4297282411 hasConcept C119857082 @default.
- W4297282411 hasConcept C126255220 @default.
- W4297282411 hasConcept C127413603 @default.
- W4297282411 hasConcept C131675550 @default.
- W4297282411 hasConcept C17744445 @default.
- W4297282411 hasConcept C185429906 @default.
- W4297282411 hasConcept C199539241 @default.
- W4297282411 hasConcept C21200559 @default.
- W4297282411 hasConcept C24326235 @default.
- W4297282411 hasConcept C2776359362 @default.
- W4297282411 hasConcept C2776459999 @default.
- W4297282411 hasConcept C33923547 @default.
- W4297282411 hasConcept C41008148 @default.
- W4297282411 hasConcept C45374587 @default.
- W4297282411 hasConcept C49740808 @default.
- W4297282411 hasConcept C76155785 @default.
- W4297282411 hasConcept C81692654 @default.
- W4297282411 hasConcept C94625758 @default.
- W4297282411 hasConceptScore W4297282411C105795698 @default.
- W4297282411 hasConceptScore W4297282411C11413529 @default.
- W4297282411 hasConceptScore W4297282411C119857082 @default.
- W4297282411 hasConceptScore W4297282411C126255220 @default.
- W4297282411 hasConceptScore W4297282411C127413603 @default.
- W4297282411 hasConceptScore W4297282411C131675550 @default.