Matches in SemOpenAlex for { <https://semopenalex.org/work/W4297348709> ?p ?o ?g. }
- W4297348709 endingPage "4479" @default.
- W4297348709 startingPage "4461" @default.
- W4297348709 abstract "Energy forecasting plays a vital role in mitigating challenges in data rich smart grid (SG) systems involving various applications such as demand-side management, load shedding, and optimum dispatch. Managing efficient forecasting while ensuring the least possible prediction error is one of the main challenges posed in the grid today, considering the uncertainty in SG data. This paper presents a comprehensive and application-oriented review of state-of-the-art forecasting methods for SG systems along with recent developments in probabilistic deep learning (PDL). Traditional point forecasting methods including statistical, machine learning (ML), and deep learning (DL) are extensively investigated in terms of their applicability to energy forecasting. In addition, the significance of hybrid and data pre-processing techniques to support forecasting performance is also studied. A comparative case study using the Victorian electricity consumption in Australia and American electric power (AEP) datasets is conducted to analyze the performance of deterministic and probabilistic forecasting methods. The analysis demonstrates higher efficacy of DL methods with appropriate hyper-parameter tuning when sample sizes are larger and involve nonlinear patterns. Furthermore, PDL methods are found to achieve at least 60% lower prediction errors in comparison to other benchmark DL methods. However, the execution time increases significantly for PDL methods due to large sample space and a tradeoff between computational performance and forecasting accuracy needs to be maintained." @default.
- W4297348709 created "2022-09-28" @default.
- W4297348709 creator A5007829488 @default.
- W4297348709 creator A5030446424 @default.
- W4297348709 creator A5046165780 @default.
- W4297348709 creator A5047158642 @default.
- W4297348709 creator A5067033094 @default.
- W4297348709 date "2022-09-27" @default.
- W4297348709 modified "2023-10-06" @default.
- W4297348709 title "Energy forecasting in smart grid systems: recent advancements in probabilistic deep learning" @default.
- W4297348709 cites W1645752154 @default.
- W4297348709 cites W1802314291 @default.
- W4297348709 cites W1956421020 @default.
- W4297348709 cites W1966080301 @default.
- W4297348709 cites W1970071487 @default.
- W4297348709 cites W1970861335 @default.
- W4297348709 cites W1974712709 @default.
- W4297348709 cites W1983758385 @default.
- W4297348709 cites W2017108743 @default.
- W4297348709 cites W2026844045 @default.
- W4297348709 cites W2035737123 @default.
- W4297348709 cites W2036681246 @default.
- W4297348709 cites W2038250306 @default.
- W4297348709 cites W2039346833 @default.
- W4297348709 cites W2044186388 @default.
- W4297348709 cites W2044742906 @default.
- W4297348709 cites W2046813720 @default.
- W4297348709 cites W2050660109 @default.
- W4297348709 cites W2051086873 @default.
- W4297348709 cites W2060606400 @default.
- W4297348709 cites W2066035378 @default.
- W4297348709 cites W2071258353 @default.
- W4297348709 cites W2073241381 @default.
- W4297348709 cites W2075846637 @default.
- W4297348709 cites W2089217930 @default.
- W4297348709 cites W2090287545 @default.
- W4297348709 cites W2096220984 @default.
- W4297348709 cites W2097811305 @default.
- W4297348709 cites W2102303403 @default.
- W4297348709 cites W2115294291 @default.
- W4297348709 cites W2115801488 @default.
- W4297348709 cites W2119866123 @default.
- W4297348709 cites W2140343305 @default.
- W4297348709 cites W2141484579 @default.
- W4297348709 cites W2144335970 @default.
- W4297348709 cites W2150878132 @default.
- W4297348709 cites W2159288286 @default.
- W4297348709 cites W2171878998 @default.
- W4297348709 cites W2173259274 @default.
- W4297348709 cites W2185918355 @default.
- W4297348709 cites W2202062742 @default.
- W4297348709 cites W2205533964 @default.
- W4297348709 cites W2275088575 @default.
- W4297348709 cites W2327401273 @default.
- W4297348709 cites W2329714387 @default.
- W4297348709 cites W2342543955 @default.
- W4297348709 cites W2509045969 @default.
- W4297348709 cites W2511713529 @default.
- W4297348709 cites W2552991604 @default.
- W4297348709 cites W2558901929 @default.
- W4297348709 cites W2568903799 @default.
- W4297348709 cites W2569349941 @default.
- W4297348709 cites W2592453717 @default.
- W4297348709 cites W2597866042 @default.
- W4297348709 cites W2601096366 @default.
- W4297348709 cites W2607740335 @default.
- W4297348709 cites W2735400342 @default.
- W4297348709 cites W2735742067 @default.
- W4297348709 cites W2752901932 @default.
- W4297348709 cites W2754252319 @default.
- W4297348709 cites W2763128055 @default.
- W4297348709 cites W2771149621 @default.
- W4297348709 cites W2778669055 @default.
- W4297348709 cites W2782902016 @default.
- W4297348709 cites W2784148232 @default.
- W4297348709 cites W2786918196 @default.
- W4297348709 cites W2791648058 @default.
- W4297348709 cites W2793486043 @default.
- W4297348709 cites W2793695278 @default.
- W4297348709 cites W2794295488 @default.
- W4297348709 cites W2801465633 @default.
- W4297348709 cites W2807414627 @default.
- W4297348709 cites W2810943906 @default.
- W4297348709 cites W2884414452 @default.
- W4297348709 cites W2888832517 @default.
- W4297348709 cites W2890330768 @default.
- W4297348709 cites W2890487029 @default.
- W4297348709 cites W2892841407 @default.
- W4297348709 cites W2893532431 @default.
- W4297348709 cites W2897446518 @default.
- W4297348709 cites W2899191291 @default.
- W4297348709 cites W2903265999 @default.
- W4297348709 cites W2909960414 @default.
- W4297348709 cites W2912623183 @default.
- W4297348709 cites W2935953376 @default.
- W4297348709 cites W2944006160 @default.
- W4297348709 cites W2950884836 @default.
- W4297348709 cites W2953049129 @default.