Matches in SemOpenAlex for { <https://semopenalex.org/work/W4297360432> ?p ?o ?g. }
- W4297360432 abstract "The second wave of the COVID-19 pandemic outburst triggered enormously all over India. This ill-fated and fatal brawl affected millions of Indian citizens, with many active and infected Indians struggling to recover from this deadly disease to date, leading to a grief situation. The present situation warrants developing a robust and sound forecasting model to evaluate the adversities of the epidemic with reasonable accuracy to assist officials in curbing this hazard. Consequently, we employed Auto-ARIMA, Auto-ETS, Auto-MLP, Auto-ELM, AM, MLP and proposed ELM methods for assessing accumulative infected COVID-19 individuals by the end of July 2021. We made 90 days of advanced forecasting, i.e., up to 24 July 2021, for the number of cumulative infected COVID-19 cases of India using all seven methods in 15 days' intervals. We fine-tuned the hyper-parameters to enhance the prediction performance of these models and observed that the proposed ELM model offers satisfactory accuracy with MAPE of 5.01, and it rendered better accuracy than the other six models. To comprehend the dataset's nature, five features are extracted. The resulting feature values encouraged further investigation of the models for an updated dataset, where the proposed model provides encouraging results." @default.
- W4297360432 created "2022-09-28" @default.
- W4297360432 creator A5013897423 @default.
- W4297360432 creator A5032087477 @default.
- W4297360432 creator A5039529562 @default.
- W4297360432 creator A5056801485 @default.
- W4297360432 creator A5063722727 @default.
- W4297360432 date "2022-09-26" @default.
- W4297360432 modified "2023-10-16" @default.
- W4297360432 title "Forecasting adversities of COVID-19 waves in India using intelligent computing" @default.
- W4297360432 cites W2111072639 @default.
- W4297360432 cites W2116512828 @default.
- W4297360432 cites W2131534673 @default.
- W4297360432 cites W2147500178 @default.
- W4297360432 cites W2306794997 @default.
- W4297360432 cites W2735629075 @default.
- W4297360432 cites W2780262749 @default.
- W4297360432 cites W2803609644 @default.
- W4297360432 cites W2890841692 @default.
- W4297360432 cites W2897308465 @default.
- W4297360432 cites W2950095140 @default.
- W4297360432 cites W2951172444 @default.
- W4297360432 cites W2955755281 @default.
- W4297360432 cites W2991096017 @default.
- W4297360432 cites W2999599148 @default.
- W4297360432 cites W3001118548 @default.
- W4297360432 cites W3001897055 @default.
- W4297360432 cites W3002108456 @default.
- W4297360432 cites W3003668884 @default.
- W4297360432 cites W3003695670 @default.
- W4297360432 cites W3004280078 @default.
- W4297360432 cites W3004775012 @default.
- W4297360432 cites W3004896487 @default.
- W4297360432 cites W3007351550 @default.
- W4297360432 cites W3007443927 @default.
- W4297360432 cites W3010699833 @default.
- W4297360432 cites W3015698531 @default.
- W4297360432 cites W3016540417 @default.
- W4297360432 cites W3032937492 @default.
- W4297360432 cites W3035619533 @default.
- W4297360432 cites W3042555506 @default.
- W4297360432 cites W3045889130 @default.
- W4297360432 cites W3046699420 @default.
- W4297360432 cites W3083637451 @default.
- W4297360432 cites W3090650942 @default.
- W4297360432 cites W3092207896 @default.
- W4297360432 cites W3095110770 @default.
- W4297360432 cites W3106321705 @default.
- W4297360432 cites W3114254772 @default.
- W4297360432 cites W3119784425 @default.
- W4297360432 cites W3119865579 @default.
- W4297360432 cites W3123505659 @default.
- W4297360432 cites W3125690720 @default.
- W4297360432 cites W3128531940 @default.
- W4297360432 cites W3129023125 @default.
- W4297360432 cites W3132856834 @default.
- W4297360432 cites W3133485307 @default.
- W4297360432 cites W3135290770 @default.
- W4297360432 cites W3139182857 @default.
- W4297360432 cites W3139466278 @default.
- W4297360432 cites W3187348096 @default.
- W4297360432 cites W4220962512 @default.
- W4297360432 cites W4281564072 @default.
- W4297360432 doi "https://doi.org/10.1007/s11334-022-00486-y" @default.
- W4297360432 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36186271" @default.
- W4297360432 hasPublicationYear "2022" @default.
- W4297360432 type Work @default.
- W4297360432 citedByCount "0" @default.
- W4297360432 crossrefType "journal-article" @default.
- W4297360432 hasAuthorship W4297360432A5013897423 @default.
- W4297360432 hasAuthorship W4297360432A5032087477 @default.
- W4297360432 hasAuthorship W4297360432A5039529562 @default.
- W4297360432 hasAuthorship W4297360432A5056801485 @default.
- W4297360432 hasAuthorship W4297360432A5063722727 @default.
- W4297360432 hasBestOaLocation W42973604321 @default.
- W4297360432 hasConcept C116675565 @default.
- W4297360432 hasConcept C119857082 @default.
- W4297360432 hasConcept C138885662 @default.
- W4297360432 hasConcept C142724271 @default.
- W4297360432 hasConcept C151406439 @default.
- W4297360432 hasConcept C154945302 @default.
- W4297360432 hasConcept C159047783 @default.
- W4297360432 hasConcept C178790620 @default.
- W4297360432 hasConcept C185592680 @default.
- W4297360432 hasConcept C24338571 @default.
- W4297360432 hasConcept C2776401178 @default.
- W4297360432 hasConcept C2779134260 @default.
- W4297360432 hasConcept C3006700255 @default.
- W4297360432 hasConcept C3008058167 @default.
- W4297360432 hasConcept C38652104 @default.
- W4297360432 hasConcept C41008148 @default.
- W4297360432 hasConcept C41895202 @default.
- W4297360432 hasConcept C49261128 @default.
- W4297360432 hasConcept C524204448 @default.
- W4297360432 hasConcept C71924100 @default.
- W4297360432 hasConcept C89623803 @default.
- W4297360432 hasConceptScore W4297360432C116675565 @default.
- W4297360432 hasConceptScore W4297360432C119857082 @default.
- W4297360432 hasConceptScore W4297360432C138885662 @default.
- W4297360432 hasConceptScore W4297360432C142724271 @default.