Matches in SemOpenAlex for { <https://semopenalex.org/work/W4297361208> ?p ?o ?g. }
- W4297361208 endingPage "12" @default.
- W4297361208 startingPage "1" @default.
- W4297361208 abstract "Lung cancer is the deadliest cancer killing almost 1.8 million people in 2020. The new cases are expanding alarmingly. Early lung cancer manifests itself in the form of nodules in the lungs. One of the most widely used techniques for both lung cancer early and noninvasive diagnosis is computed tomography (CT). However, the intensive workload of radiologists to read a large number of scans for nodules detection gives rise to issues like false detection and missed detection. To overcome these issues, we proposed an innovative strategy titled adaptive boosting self-normalized multiview convolution neural network (AdaBoost-SNMV-CNN) for lung cancer nodules detection across CT scans. In AdaBoost-SNMV-CNN, MV-CNN function as a baseline learner while the scaled exponential linear unit (SELU) activation function normalizes the layers by considering their neighbors' information and a special drop-out technique (α-dropout). The proposed method was trained and tested using the widely Lung Image Database Consortium and Image Database Resource Initiative (LIDC-IDRI) and Early Lung Cancer Action Program (ELCAP) datasets. AdaBoost-SNMV-CNN achieved an accuracy of 92%, sensitivity of 93%, and specificity of 92% for lung nodules detection on the LIDC-IDRI dataset. Meanwhile, on the ELCAP dataset, the accuracy for detecting lung nodules was 99%, sensitivity 100%, and specificity 98%. AdaBoost-SNMV-CNN outperformed the majority of the model in accuracy, sensitivity, and specificity. The multiviews confer the model's good generalization and learning ability for diverse features of lung nodules, the model architecture is simple, and has a minimal computational time of around 102 minutes. We believe that AdaBoost-SNMV-CNN has good accuracy for the detection of lung nodules and anticipate its potential application in the noninvasive clinical diagnosis of lung cancer. This model can be of good assistance to the radiologist and will be of interest to researchers involved in the designing and development of advanced systems for the detection of lung nodules to accomplish the goal of noninvasive diagnosis of lung cancer." @default.
- W4297361208 created "2022-09-28" @default.
- W4297361208 creator A5009907177 @default.
- W4297361208 creator A5025785656 @default.
- W4297361208 creator A5036808729 @default.
- W4297361208 creator A5040917523 @default.
- W4297361208 creator A5048667139 @default.
- W4297361208 creator A5063865607 @default.
- W4297361208 creator A5077696756 @default.
- W4297361208 date "2022-09-26" @default.
- W4297361208 modified "2023-10-14" @default.
- W4297361208 title "Lung Cancer Nodules Detection via an Adaptive Boosting Algorithm Based on Self-Normalized Multiview Convolutional Neural Network" @default.
- W4297361208 cites W130099911 @default.
- W4297361208 cites W1986649315 @default.
- W4297361208 cites W2152205214 @default.
- W4297361208 cites W2394599079 @default.
- W4297361208 cites W2531409750 @default.
- W4297361208 cites W2587019480 @default.
- W4297361208 cites W2598574140 @default.
- W4297361208 cites W2622826443 @default.
- W4297361208 cites W2655047037 @default.
- W4297361208 cites W2781660331 @default.
- W4297361208 cites W2791260913 @default.
- W4297361208 cites W2887808321 @default.
- W4297361208 cites W2890622142 @default.
- W4297361208 cites W2897755679 @default.
- W4297361208 cites W2938291263 @default.
- W4297361208 cites W2951211570 @default.
- W4297361208 cites W2979840300 @default.
- W4297361208 cites W2999759831 @default.
- W4297361208 cites W3014666486 @default.
- W4297361208 cites W3024871967 @default.
- W4297361208 cites W3098977020 @default.
- W4297361208 cites W3109319544 @default.
- W4297361208 cites W3125654474 @default.
- W4297361208 cites W3128646645 @default.
- W4297361208 cites W3134305302 @default.
- W4297361208 cites W3138078459 @default.
- W4297361208 cites W3140854437 @default.
- W4297361208 cites W3212461163 @default.
- W4297361208 cites W3217486909 @default.
- W4297361208 cites W4206243212 @default.
- W4297361208 cites W4210416453 @default.
- W4297361208 cites W4210960660 @default.
- W4297361208 cites W4211120608 @default.
- W4297361208 cites W4213124056 @default.
- W4297361208 cites W4213134699 @default.
- W4297361208 cites W4226303866 @default.
- W4297361208 cites W4293097739 @default.
- W4297361208 doi "https://doi.org/10.1155/2022/5682451" @default.
- W4297361208 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36199795" @default.
- W4297361208 hasPublicationYear "2022" @default.
- W4297361208 type Work @default.
- W4297361208 citedByCount "8" @default.
- W4297361208 countsByYear W42973612082022 @default.
- W4297361208 countsByYear W42973612082023 @default.
- W4297361208 crossrefType "journal-article" @default.
- W4297361208 hasAuthorship W4297361208A5009907177 @default.
- W4297361208 hasAuthorship W4297361208A5025785656 @default.
- W4297361208 hasAuthorship W4297361208A5036808729 @default.
- W4297361208 hasAuthorship W4297361208A5040917523 @default.
- W4297361208 hasAuthorship W4297361208A5048667139 @default.
- W4297361208 hasAuthorship W4297361208A5063865607 @default.
- W4297361208 hasAuthorship W4297361208A5077696756 @default.
- W4297361208 hasBestOaLocation W42973612081 @default.
- W4297361208 hasConcept C12267149 @default.
- W4297361208 hasConcept C141404830 @default.
- W4297361208 hasConcept C142724271 @default.
- W4297361208 hasConcept C153180895 @default.
- W4297361208 hasConcept C154945302 @default.
- W4297361208 hasConcept C2776256026 @default.
- W4297361208 hasConcept C41008148 @default.
- W4297361208 hasConcept C46686674 @default.
- W4297361208 hasConcept C71924100 @default.
- W4297361208 hasConcept C81363708 @default.
- W4297361208 hasConceptScore W4297361208C12267149 @default.
- W4297361208 hasConceptScore W4297361208C141404830 @default.
- W4297361208 hasConceptScore W4297361208C142724271 @default.
- W4297361208 hasConceptScore W4297361208C153180895 @default.
- W4297361208 hasConceptScore W4297361208C154945302 @default.
- W4297361208 hasConceptScore W4297361208C2776256026 @default.
- W4297361208 hasConceptScore W4297361208C41008148 @default.
- W4297361208 hasConceptScore W4297361208C46686674 @default.
- W4297361208 hasConceptScore W4297361208C71924100 @default.
- W4297361208 hasConceptScore W4297361208C81363708 @default.
- W4297361208 hasFunder F4320335777 @default.
- W4297361208 hasLocation W42973612081 @default.
- W4297361208 hasLocation W42973612082 @default.
- W4297361208 hasLocation W42973612083 @default.
- W4297361208 hasOpenAccess W4297361208 @default.
- W4297361208 hasPrimaryLocation W42973612081 @default.
- W4297361208 hasRelatedWork W1987859285 @default.
- W4297361208 hasRelatedWork W2003125512 @default.
- W4297361208 hasRelatedWork W2010832783 @default.
- W4297361208 hasRelatedWork W2096475118 @default.
- W4297361208 hasRelatedWork W2108043611 @default.
- W4297361208 hasRelatedWork W2142337518 @default.
- W4297361208 hasRelatedWork W2340694410 @default.