Matches in SemOpenAlex for { <https://semopenalex.org/work/W4297368300> ?p ?o ?g. }
- W4297368300 endingPage "105752" @default.
- W4297368300 startingPage "105752" @default.
- W4297368300 abstract "State of Charge (SOC), state of health (SOH), and remaining useful life (RUL) are the crucial indexes used in the assessment of electric vehicle (EV) battery management systems (BMS). The performance and efficiency of EVs are subject to the precise estimation of SOC, SOH, and RUL in BMS which enhances the battery reliability, safety, and longevity. However, the estimation of SOC, SOH, and RUL is challenging due to the battery capacity degradation and varying environmental conditions. Recently, deep learning (DL) has received wide attention for battery SOC, SOH, and RUL estimation due to the accessibility of a vast amount of data, large storage volume, and powerful computing processors. Nevertheless, the application of DL in SOC, SOH, and RUL estimation for EVs is still limited. Therefore, the novelty of this paper is to deliver a comprehensive review of DL-enabled SOC, SOH, and RUL estimation for BMS, focusing on methods, implementations, strengths, weaknesses, issues, accuracy, and contributions. Moreover, this study explores the numerous important implementation factors of DL methods concerning data type, features, size, preprocessing, algorithm operation, functions, hyperparameter adjustments, and performance evaluation. Additionally, the review explores various limitations and challenges of DL in BMS related to battery, algorithm, and operational issues. Finally, future opportunities and prospects are delivered that would support the EV engineers and automotive industries to establish an accurate and robust DL-based SOC, SOH, and RUL estimation technique towards smart BMS in future sustainable EV applications." @default.
- W4297368300 created "2022-09-28" @default.
- W4297368300 creator A5000778938 @default.
- W4297368300 creator A5000829452 @default.
- W4297368300 creator A5002865954 @default.
- W4297368300 creator A5019057241 @default.
- W4297368300 creator A5019902685 @default.
- W4297368300 creator A5035886422 @default.
- W4297368300 creator A5049144405 @default.
- W4297368300 creator A5055042107 @default.
- W4297368300 creator A5072301467 @default.
- W4297368300 date "2022-11-01" @default.
- W4297368300 modified "2023-10-18" @default.
- W4297368300 title "Deep learning enabled state of charge, state of health and remaining useful life estimation for smart battery management system: Methods, implementations, issues and prospects" @default.
- W4297368300 cites W1974283773 @default.
- W4297368300 cites W2005697477 @default.
- W4297368300 cites W2006829425 @default.
- W4297368300 cites W2084068006 @default.
- W4297368300 cites W2089118855 @default.
- W4297368300 cites W2118023920 @default.
- W4297368300 cites W2201263372 @default.
- W4297368300 cites W2219501311 @default.
- W4297368300 cites W2342265232 @default.
- W4297368300 cites W2514892265 @default.
- W4297368300 cites W2587340633 @default.
- W4297368300 cites W2587507211 @default.
- W4297368300 cites W2613389393 @default.
- W4297368300 cites W2624661965 @default.
- W4297368300 cites W2755729630 @default.
- W4297368300 cites W2766784949 @default.
- W4297368300 cites W2774327138 @default.
- W4297368300 cites W2774992281 @default.
- W4297368300 cites W2776458183 @default.
- W4297368300 cites W2790625295 @default.
- W4297368300 cites W2791067576 @default.
- W4297368300 cites W2795079499 @default.
- W4297368300 cites W2883525675 @default.
- W4297368300 cites W2885578090 @default.
- W4297368300 cites W2890169947 @default.
- W4297368300 cites W2890209713 @default.
- W4297368300 cites W2894234546 @default.
- W4297368300 cites W2894410771 @default.
- W4297368300 cites W2896294159 @default.
- W4297368300 cites W2907460853 @default.
- W4297368300 cites W2911341021 @default.
- W4297368300 cites W2912511381 @default.
- W4297368300 cites W2915392080 @default.
- W4297368300 cites W2920560441 @default.
- W4297368300 cites W2921068663 @default.
- W4297368300 cites W2922306207 @default.
- W4297368300 cites W2924382816 @default.
- W4297368300 cites W2940722387 @default.
- W4297368300 cites W2941419825 @default.
- W4297368300 cites W2944921051 @default.
- W4297368300 cites W2945506889 @default.
- W4297368300 cites W2945781794 @default.
- W4297368300 cites W2948266581 @default.
- W4297368300 cites W2953509133 @default.
- W4297368300 cites W2955134049 @default.
- W4297368300 cites W2955325445 @default.
- W4297368300 cites W2955355093 @default.
- W4297368300 cites W2957056027 @default.
- W4297368300 cites W2959526377 @default.
- W4297368300 cites W2966169983 @default.
- W4297368300 cites W2968446814 @default.
- W4297368300 cites W2968677983 @default.
- W4297368300 cites W2973525777 @default.
- W4297368300 cites W2973538758 @default.
- W4297368300 cites W2980420373 @default.
- W4297368300 cites W2987934294 @default.
- W4297368300 cites W2991075588 @default.
- W4297368300 cites W2999951339 @default.
- W4297368300 cites W3001479960 @default.
- W4297368300 cites W3005124815 @default.
- W4297368300 cites W3007658705 @default.
- W4297368300 cites W3009077662 @default.
- W4297368300 cites W3010779281 @default.
- W4297368300 cites W3011789766 @default.
- W4297368300 cites W3011952957 @default.
- W4297368300 cites W3012075351 @default.
- W4297368300 cites W3012309884 @default.
- W4297368300 cites W3012958665 @default.
- W4297368300 cites W3013372615 @default.
- W4297368300 cites W3014259513 @default.
- W4297368300 cites W3015574081 @default.
- W4297368300 cites W3017186475 @default.
- W4297368300 cites W3019324730 @default.
- W4297368300 cites W3027324516 @default.
- W4297368300 cites W3028003652 @default.
- W4297368300 cites W3029120371 @default.
- W4297368300 cites W3033613562 @default.
- W4297368300 cites W3035785571 @default.
- W4297368300 cites W3035894202 @default.
- W4297368300 cites W3037516875 @default.
- W4297368300 cites W3039184636 @default.
- W4297368300 cites W3040694753 @default.
- W4297368300 cites W3042713179 @default.
- W4297368300 cites W3043289899 @default.