Matches in SemOpenAlex for { <https://semopenalex.org/work/W4297372085> ?p ?o ?g. }
- W4297372085 endingPage "109660" @default.
- W4297372085 startingPage "109660" @default.
- W4297372085 abstract "The aggregation of individuals facilitates local information exchange, and the migration of individuals from one population to another leads to a dynamic community structure. In addition, the negative feedback regulation mechanism of organisms helps them in good living conditions. Based on the above knowledge, a novel particle swarm optimization algorithm with a self-organizing topology structure and self-adaptive adjustable parameters is proposed (KGPSO). During the optimization process, the K-Means clustering method periodically divides the particle swarm into multiple distance-based sub-swarms, and the optimal number of sub-swarms is determined by maximizing the Calinski-Harabasz index. This strategy helps maintain the population diversity and gives particles the ability to perceive the surrounding environment. The parameters used to update the particle velocity are adjusted based on the gradient descent of its fitness error, ensuring a dynamic balance between exploration and exploitation. The hyperparameters of KGPSO are tuned by Bayesian optimization method to improve the algorithm performance further. Two benchmark suites are used to evaluate the performance of KGPSO. Both ranking results and Wilcoxon signed-rank tests show that KGPSO performs best among the PSO algorithms tested. Moreover, the excellent optimization capability of KGPSO are proven in the process of X-ray CT image enhancement, making it possible to analyze the structure and motion of heterogeneous granular materials efficiently and robustly. In conclusion, the proposed KGPSO can provide a stable and powerful support for the frontier experimental research of granular materials and expand the research scope." @default.
- W4297372085 created "2022-09-28" @default.
- W4297372085 creator A5003073100 @default.
- W4297372085 creator A5011682648 @default.
- W4297372085 creator A5024397917 @default.
- W4297372085 creator A5064351031 @default.
- W4297372085 creator A5076366036 @default.
- W4297372085 creator A5076983797 @default.
- W4297372085 date "2022-11-01" @default.
- W4297372085 modified "2023-10-12" @default.
- W4297372085 title "A self-adaptive gradient-based particle swarm optimization algorithm with dynamic population topology" @default.
- W4297372085 cites W1179686678 @default.
- W4297372085 cites W138680772 @default.
- W4297372085 cites W1965392777 @default.
- W4297372085 cites W1971132339 @default.
- W4297372085 cites W1976323314 @default.
- W4297372085 cites W1991248646 @default.
- W4297372085 cites W1992794286 @default.
- W4297372085 cites W2016574294 @default.
- W4297372085 cites W2033920513 @default.
- W4297372085 cites W2048952098 @default.
- W4297372085 cites W2053432776 @default.
- W4297372085 cites W2062355752 @default.
- W4297372085 cites W2062711254 @default.
- W4297372085 cites W2067936513 @default.
- W4297372085 cites W2073751678 @default.
- W4297372085 cites W2097612618 @default.
- W4297372085 cites W2101017263 @default.
- W4297372085 cites W2108388069 @default.
- W4297372085 cites W2139339670 @default.
- W4297372085 cites W2140491475 @default.
- W4297372085 cites W2148584675 @default.
- W4297372085 cites W2151554678 @default.
- W4297372085 cites W2169064301 @default.
- W4297372085 cites W2169245194 @default.
- W4297372085 cites W2192203593 @default.
- W4297372085 cites W2224734920 @default.
- W4297372085 cites W2301554715 @default.
- W4297372085 cites W240043369 @default.
- W4297372085 cites W2480431634 @default.
- W4297372085 cites W2528404019 @default.
- W4297372085 cites W2573137292 @default.
- W4297372085 cites W2592666947 @default.
- W4297372085 cites W2594681093 @default.
- W4297372085 cites W2751383815 @default.
- W4297372085 cites W2751482852 @default.
- W4297372085 cites W2758008099 @default.
- W4297372085 cites W2762996449 @default.
- W4297372085 cites W2781817731 @default.
- W4297372085 cites W2789717563 @default.
- W4297372085 cites W2789930262 @default.
- W4297372085 cites W2790368141 @default.
- W4297372085 cites W2797485770 @default.
- W4297372085 cites W2883257394 @default.
- W4297372085 cites W2884562637 @default.
- W4297372085 cites W2887897850 @default.
- W4297372085 cites W2890894438 @default.
- W4297372085 cites W2893066337 @default.
- W4297372085 cites W2898351082 @default.
- W4297372085 cites W2903230253 @default.
- W4297372085 cites W2904591439 @default.
- W4297372085 cites W2921848296 @default.
- W4297372085 cites W2935850529 @default.
- W4297372085 cites W2944372231 @default.
- W4297372085 cites W2952738056 @default.
- W4297372085 cites W2954467150 @default.
- W4297372085 cites W2957335648 @default.
- W4297372085 cites W2958371699 @default.
- W4297372085 cites W2968462207 @default.
- W4297372085 cites W2969107729 @default.
- W4297372085 cites W2970404044 @default.
- W4297372085 cites W2980398463 @default.
- W4297372085 cites W2990200213 @default.
- W4297372085 cites W2990306816 @default.
- W4297372085 cites W2990389876 @default.
- W4297372085 cites W2996295606 @default.
- W4297372085 cites W2997199851 @default.
- W4297372085 cites W3010481097 @default.
- W4297372085 cites W3037840638 @default.
- W4297372085 cites W3040403500 @default.
- W4297372085 cites W3042286978 @default.
- W4297372085 cites W3082429914 @default.
- W4297372085 cites W3088641910 @default.
- W4297372085 cites W3107081340 @default.
- W4297372085 cites W3114056360 @default.
- W4297372085 cites W3119035436 @default.
- W4297372085 cites W3121941169 @default.
- W4297372085 cites W3135333938 @default.
- W4297372085 cites W3135600603 @default.
- W4297372085 cites W3161073904 @default.
- W4297372085 cites W3163884418 @default.
- W4297372085 cites W3195240769 @default.
- W4297372085 cites W3202855064 @default.
- W4297372085 cites W3204071497 @default.
- W4297372085 cites W3206969312 @default.
- W4297372085 cites W3212454264 @default.
- W4297372085 cites W4200114476 @default.
- W4297372085 cites W4206720944 @default.