Matches in SemOpenAlex for { <https://semopenalex.org/work/W4297394494> ?p ?o ?g. }
- W4297394494 endingPage "e055170" @default.
- W4297394494 startingPage "e055170" @default.
- W4297394494 abstract "Predicting the presence or absence of coronary artery disease (CAD) is clinically important. Pretest probability (PTP) and CAD consortium clinical (CAD2) model and risk scores used in the guidelines are not sufficiently accurate as the only guidance for applying invasive testing or discharging a patient. Artificial intelligence without the need of additional non-invasive testing is not yet used in this context, as previous results of the model are promising, but available in high-risk population only. Still, validation in low-risk patients, which is clinically most relevant, is lacking.Retrospective cohort study.Secondary outpatient clinic care in one Dutch academic hospital.We included 696 patients referred from primary care for further testing regarding the presence or absence of CAD. The results were compared with PTP and CAD2 using receiver operating characteristic (ROC) curves (area under the curve (AUC)). CAD was defined by a coronary stenosis >50% in at least one coronary vessel in invasive coronary or CT angiography, or having a coronary event within 6 months.The first cohort validating the memetic pattern-based algorithm (MPA) model developed in two high-risk populations in a low-risk to intermediate-risk cohort to improve risk stratification for non-invasive diagnosis of the presence or absence of CAD.The population contained 49% male, average age was 65.6±12.6 years. 16.2% had CAD. The AUCs of the MPA model, the PTP and the CAD2 were 0.87, 0.80, and 0.82, respectively. Applying the MPA model resulted in possible discharge of 67.7% of the patients with an acceptable CAD rate of 4.2%.In this low-risk to intermediate-risk population, the MPA model provides a good risk stratification of presence or absence of CAD with a better ROC compared with traditional risk scores. The results are promising but need prospective confirmation." @default.
- W4297394494 created "2022-09-28" @default.
- W4297394494 creator A5001781828 @default.
- W4297394494 creator A5028003903 @default.
- W4297394494 creator A5028434463 @default.
- W4297394494 creator A5036080052 @default.
- W4297394494 creator A5037748391 @default.
- W4297394494 creator A5042061361 @default.
- W4297394494 creator A5042330578 @default.
- W4297394494 creator A5044848112 @default.
- W4297394494 creator A5062079719 @default.
- W4297394494 creator A5066612951 @default.
- W4297394494 creator A5077330228 @default.
- W4297394494 date "2022-09-01" @default.
- W4297394494 modified "2023-10-17" @default.
- W4297394494 title "Use of artificial intelligence to assess the risk of coronary artery disease without additional (non-invasive) testing: validation in a low-risk to intermediate-risk outpatient clinic cohort" @default.
- W4297394494 cites W1936833235 @default.
- W4297394494 cites W2064303441 @default.
- W4297394494 cites W2079307913 @default.
- W4297394494 cites W2123036928 @default.
- W4297394494 cites W2123693261 @default.
- W4297394494 cites W2124659021 @default.
- W4297394494 cites W2126900802 @default.
- W4297394494 cites W2134796344 @default.
- W4297394494 cites W2135538639 @default.
- W4297394494 cites W2157759970 @default.
- W4297394494 cites W2161675674 @default.
- W4297394494 cites W2165729583 @default.
- W4297394494 cites W2167513613 @default.
- W4297394494 cites W2258378074 @default.
- W4297394494 cites W2274481996 @default.
- W4297394494 cites W2328176404 @default.
- W4297394494 cites W2456308 @default.
- W4297394494 cites W2473077508 @default.
- W4297394494 cites W2519213815 @default.
- W4297394494 cites W2593383919 @default.
- W4297394494 cites W2594306629 @default.
- W4297394494 cites W2799794744 @default.
- W4297394494 cites W2852998865 @default.
- W4297394494 cites W2879487792 @default.
- W4297394494 cites W2887666513 @default.
- W4297394494 cites W2920291204 @default.
- W4297394494 cites W2936006047 @default.
- W4297394494 cites W2965263749 @default.
- W4297394494 cites W3011371150 @default.
- W4297394494 cites W3097577799 @default.
- W4297394494 cites W3131657490 @default.
- W4297394494 cites W3144988052 @default.
- W4297394494 cites W4231358771 @default.
- W4297394494 cites W4247921188 @default.
- W4297394494 doi "https://doi.org/10.1136/bmjopen-2021-055170" @default.
- W4297394494 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36167368" @default.
- W4297394494 hasPublicationYear "2022" @default.
- W4297394494 type Work @default.
- W4297394494 citedByCount "2" @default.
- W4297394494 countsByYear W42973944942022 @default.
- W4297394494 countsByYear W42973944942023 @default.
- W4297394494 crossrefType "journal-article" @default.
- W4297394494 hasAuthorship W4297394494A5001781828 @default.
- W4297394494 hasAuthorship W4297394494A5028003903 @default.
- W4297394494 hasAuthorship W4297394494A5028434463 @default.
- W4297394494 hasAuthorship W4297394494A5036080052 @default.
- W4297394494 hasAuthorship W4297394494A5037748391 @default.
- W4297394494 hasAuthorship W4297394494A5042061361 @default.
- W4297394494 hasAuthorship W4297394494A5042330578 @default.
- W4297394494 hasAuthorship W4297394494A5044848112 @default.
- W4297394494 hasAuthorship W4297394494A5062079719 @default.
- W4297394494 hasAuthorship W4297394494A5066612951 @default.
- W4297394494 hasAuthorship W4297394494A5077330228 @default.
- W4297394494 hasBestOaLocation W42973944941 @default.
- W4297394494 hasConcept C12174686 @default.
- W4297394494 hasConcept C126322002 @default.
- W4297394494 hasConcept C127413603 @default.
- W4297394494 hasConcept C141071460 @default.
- W4297394494 hasConcept C151730666 @default.
- W4297394494 hasConcept C167135981 @default.
- W4297394494 hasConcept C194789388 @default.
- W4297394494 hasConcept C194828623 @default.
- W4297394494 hasConcept C199639397 @default.
- W4297394494 hasConcept C201903717 @default.
- W4297394494 hasConcept C2778213512 @default.
- W4297394494 hasConcept C2779343474 @default.
- W4297394494 hasConcept C2908647359 @default.
- W4297394494 hasConcept C38652104 @default.
- W4297394494 hasConcept C41008148 @default.
- W4297394494 hasConcept C58471807 @default.
- W4297394494 hasConcept C71924100 @default.
- W4297394494 hasConcept C72563966 @default.
- W4297394494 hasConcept C86803240 @default.
- W4297394494 hasConcept C99454951 @default.
- W4297394494 hasConceptScore W4297394494C12174686 @default.
- W4297394494 hasConceptScore W4297394494C126322002 @default.
- W4297394494 hasConceptScore W4297394494C127413603 @default.
- W4297394494 hasConceptScore W4297394494C141071460 @default.
- W4297394494 hasConceptScore W4297394494C151730666 @default.
- W4297394494 hasConceptScore W4297394494C167135981 @default.
- W4297394494 hasConceptScore W4297394494C194789388 @default.
- W4297394494 hasConceptScore W4297394494C194828623 @default.