Matches in SemOpenAlex for { <https://semopenalex.org/work/W4297399612> ?p ?o ?g. }
Showing items 1 to 100 of
100
with 100 items per page.
- W4297399612 endingPage "125" @default.
- W4297399612 startingPage "109" @default.
- W4297399612 abstract "The continuous development of mobile sensing devices enables them to quickly perceive a large amount of data, forming a promising mobile crowd sensing (MCS) platform for large-scale data collection. The raw data stored in the data platform is further synthesized into a variety of Internet of Things (IoT) services to data consumers through the processing of the data platform. However, due to the wide range of data sources, sensing devices may contribute corrupted data, or maliciously spread forged data, causing the data platform to make wrong decisions and damage the quality of service. Therefore, collecting high-quality data is critical for the security of the data platform and the quality of IoT applications. In this paper, a novel Spatiotemporal Correlation Truth Discovery (SCTD) scheme is proposed, which adopts historical data as verifiable evidence to identify the truth of reported data and gain the trust of workers, consequently recruiting high-trust devices to collect data. First, Unmanned Aerial Vehicles (UAVs) are sent to collect Gold Ground Truth Data (GGTD), which is used as the benchmark to verify the data truth of the minority sensing devices. Then a trust evaluation method is proposed to calculate the trust of devices. Second, the data reported by trusted devices as Silver Ground Truth Data (SGTD) is utilized to verify the trust of most devices, so the method proposed in this paper can discover the truth of massive data. Third, to reduce the cost of truth discovery, a low-cost method of data fitting is proposed to collect massive historical data of the trusted device, thereby verifying the truth of data in the same time and space. Since historical data contributes little value to IoT services, the platform can obtain a large amount of historical data by paying low rewards to the devices. Finally, we propose to select mobile sensing devices to collect truthful data in different spaces, which can effectively cover the spatiotemporal correlation data truth discovery in time and space, thereby verifying as much data submitted to the platform as possible. Based on the trust relationships constructed in this paper, a novel trust-based recruitment scheme is carried out for selecting the most trustworthy workers to participate in data-sensing tasks. The experimental results show that our solution can accurately identify the trust of more workers and verify the truth of data in a wider range while minimizing the cost of the data platform. • A novel Spatiotemporal Correlation Truth Discovery (SCTD) scheme is proposed to identify the truth of sensing data. • A trust evaluation method is proposed to calculate the trust of devices based on the truthful data of trusted devices. • A low-cost method is proposed to collect massive historical data as verifiable evidence to reduce the cost of data platform. • Mobile devices are selected to extend the spatiotemporal coverage of truth discovery. • Experimental results show the proposed scheme can effectively identify the truth of the data in a wide range." @default.
- W4297399612 created "2022-09-28" @default.
- W4297399612 creator A5004379460 @default.
- W4297399612 creator A5020127512 @default.
- W4297399612 creator A5022247856 @default.
- W4297399612 creator A5028789695 @default.
- W4297399612 creator A5075435434 @default.
- W4297399612 creator A5084587716 @default.
- W4297399612 date "2023-02-01" @default.
- W4297399612 modified "2023-10-12" @default.
- W4297399612 title "SCTD: A spatiotemporal correlation truth discovery scheme for security management of data platform" @default.
- W4297399612 cites W1499884756 @default.
- W4297399612 cites W1561867011 @default.
- W4297399612 cites W1996573126 @default.
- W4297399612 cites W2502154934 @default.
- W4297399612 cites W2795991327 @default.
- W4297399612 cites W2800806089 @default.
- W4297399612 cites W2894526849 @default.
- W4297399612 cites W2951926420 @default.
- W4297399612 cites W2962804513 @default.
- W4297399612 cites W2970163346 @default.
- W4297399612 cites W2982938377 @default.
- W4297399612 cites W2990695676 @default.
- W4297399612 cites W3005064273 @default.
- W4297399612 cites W3007847126 @default.
- W4297399612 cites W3014136593 @default.
- W4297399612 cites W3033987777 @default.
- W4297399612 cites W3033995680 @default.
- W4297399612 cites W3036867964 @default.
- W4297399612 cites W3043117587 @default.
- W4297399612 cites W3047517634 @default.
- W4297399612 cites W3048060641 @default.
- W4297399612 cites W3088388249 @default.
- W4297399612 cites W3092236496 @default.
- W4297399612 cites W3092413484 @default.
- W4297399612 cites W3096430269 @default.
- W4297399612 cites W3109702311 @default.
- W4297399612 cites W3109858579 @default.
- W4297399612 cites W3114497997 @default.
- W4297399612 cites W3120558633 @default.
- W4297399612 cites W3127633874 @default.
- W4297399612 cites W3132473320 @default.
- W4297399612 cites W3137298777 @default.
- W4297399612 cites W3142742079 @default.
- W4297399612 cites W3158914115 @default.
- W4297399612 cites W3165902623 @default.
- W4297399612 cites W3166388230 @default.
- W4297399612 cites W3172621498 @default.
- W4297399612 cites W3195668958 @default.
- W4297399612 cites W3196904597 @default.
- W4297399612 cites W3197262598 @default.
- W4297399612 cites W3197814746 @default.
- W4297399612 cites W3215723981 @default.
- W4297399612 cites W4211223090 @default.
- W4297399612 cites W4285055411 @default.
- W4297399612 cites W4289533944 @default.
- W4297399612 doi "https://doi.org/10.1016/j.future.2022.09.022" @default.
- W4297399612 hasPublicationYear "2023" @default.
- W4297399612 type Work @default.
- W4297399612 citedByCount "8" @default.
- W4297399612 countsByYear W42973996122023 @default.
- W4297399612 crossrefType "journal-article" @default.
- W4297399612 hasAuthorship W4297399612A5004379460 @default.
- W4297399612 hasAuthorship W4297399612A5020127512 @default.
- W4297399612 hasAuthorship W4297399612A5022247856 @default.
- W4297399612 hasAuthorship W4297399612A5028789695 @default.
- W4297399612 hasAuthorship W4297399612A5075435434 @default.
- W4297399612 hasAuthorship W4297399612A5084587716 @default.
- W4297399612 hasConcept C124101348 @default.
- W4297399612 hasConcept C134306372 @default.
- W4297399612 hasConcept C2522767166 @default.
- W4297399612 hasConcept C33923547 @default.
- W4297399612 hasConcept C41008148 @default.
- W4297399612 hasConcept C77618280 @default.
- W4297399612 hasConceptScore W4297399612C124101348 @default.
- W4297399612 hasConceptScore W4297399612C134306372 @default.
- W4297399612 hasConceptScore W4297399612C2522767166 @default.
- W4297399612 hasConceptScore W4297399612C33923547 @default.
- W4297399612 hasConceptScore W4297399612C41008148 @default.
- W4297399612 hasConceptScore W4297399612C77618280 @default.
- W4297399612 hasFunder F4320321001 @default.
- W4297399612 hasLocation W42973996121 @default.
- W4297399612 hasOpenAccess W4297399612 @default.
- W4297399612 hasPrimaryLocation W42973996121 @default.
- W4297399612 hasRelatedWork W1521353230 @default.
- W4297399612 hasRelatedWork W1596397513 @default.
- W4297399612 hasRelatedWork W1983893590 @default.
- W4297399612 hasRelatedWork W2002200798 @default.
- W4297399612 hasRelatedWork W2323618188 @default.
- W4297399612 hasRelatedWork W2373250155 @default.
- W4297399612 hasRelatedWork W2394099118 @default.
- W4297399612 hasRelatedWork W2607069708 @default.
- W4297399612 hasRelatedWork W2908373594 @default.
- W4297399612 hasRelatedWork W3018461255 @default.
- W4297399612 hasVolume "139" @default.
- W4297399612 isParatext "false" @default.
- W4297399612 isRetracted "false" @default.
- W4297399612 workType "article" @default.