Matches in SemOpenAlex for { <https://semopenalex.org/work/W4297423117> ?p ?o ?g. }
Showing items 1 to 75 of
75
with 100 items per page.
- W4297423117 endingPage "100616" @default.
- W4297423117 startingPage "100616" @default.
- W4297423117 abstract "On the Semantic web, ontologies are thought to be the remedy to data heterogeneity, and correlating ontologies is a highly effective technique. Although the use of representation learning approaches to a variety of applications has showed significant promise, they have had little effect on the issue of ontology matching and classification. In order to establish alignments between two ontologies, this research presents the Multi-Ontology Mapping Generative Adversarial Network in Internet of Things (MOMGANI). For the instance of ontology mapping, we suggest using a two-system representation learning network consisting of a Generator and Discriminator. The Generator applies a probabilistic softmax classifier to the different Name, Label, Comments, Properties, Instance descriptions, concept characteristics, and the neighbourhood concepts for each of the ontology's properties. In order to support the assertions that the Generator has generated, the Discriminator network employs a novel Bidirectional Long Short-Term Memory (Bi-LSTM network) with an Ontology Attention mechanism enhanced by the concept's descriptions. As a result, both systems are in a feedback mechanism where they can learn from one another. The system will produce a set of triples that list all the associated concepts from various ontologies as its final product. Domain experts will review these triples outside of the band to ensure that only true concepts and triples are chosen for the alignment. In comparison to using the ontologies separately, the aligned ontology enables extended querying and inference across related ontologies and domains. Considering metrics like recall, precision, and F-measure, the experimental evaluation was performed utilizing the datasets for classes alignment, property alignment, and instances alignment. The proposed architecture provides a recall, precision, and F-measure of 0.92, 0.99, and 0.83 respectively which reveals that this model outperforms the traditional methods." @default.
- W4297423117 created "2022-09-28" @default.
- W4297423117 creator A5037506027 @default.
- W4297423117 creator A5037600026 @default.
- W4297423117 date "2022-11-01" @default.
- W4297423117 modified "2023-09-30" @default.
- W4297423117 title "Multi-ontology mapping generative adversarial network in internet of things for ontology alignment" @default.
- W4297423117 cites W1977820977 @default.
- W4297423117 cites W2027416828 @default.
- W4297423117 cites W2035926991 @default.
- W4297423117 cites W2054572628 @default.
- W4297423117 cites W2057545812 @default.
- W4297423117 cites W2075613361 @default.
- W4297423117 cites W2102802363 @default.
- W4297423117 cites W2131203899 @default.
- W4297423117 cites W2207118533 @default.
- W4297423117 cites W2517589459 @default.
- W4297423117 cites W2763397383 @default.
- W4297423117 cites W2953594521 @default.
- W4297423117 cites W2971201090 @default.
- W4297423117 cites W2976457947 @default.
- W4297423117 cites W3004827127 @default.
- W4297423117 cites W3014601019 @default.
- W4297423117 cites W4220654399 @default.
- W4297423117 doi "https://doi.org/10.1016/j.iot.2022.100616" @default.
- W4297423117 hasPublicationYear "2022" @default.
- W4297423117 type Work @default.
- W4297423117 citedByCount "1" @default.
- W4297423117 countsByYear W42974231172023 @default.
- W4297423117 crossrefType "journal-article" @default.
- W4297423117 hasAuthorship W4297423117A5037506027 @default.
- W4297423117 hasAuthorship W4297423117A5037600026 @default.
- W4297423117 hasConcept C111472728 @default.
- W4297423117 hasConcept C137982476 @default.
- W4297423117 hasConcept C138885662 @default.
- W4297423117 hasConcept C154945302 @default.
- W4297423117 hasConcept C2129575 @default.
- W4297423117 hasConcept C22550185 @default.
- W4297423117 hasConcept C23123220 @default.
- W4297423117 hasConcept C25810664 @default.
- W4297423117 hasConcept C2776214188 @default.
- W4297423117 hasConcept C41008148 @default.
- W4297423117 hasConcept C78726541 @default.
- W4297423117 hasConcept C98893333 @default.
- W4297423117 hasConceptScore W4297423117C111472728 @default.
- W4297423117 hasConceptScore W4297423117C137982476 @default.
- W4297423117 hasConceptScore W4297423117C138885662 @default.
- W4297423117 hasConceptScore W4297423117C154945302 @default.
- W4297423117 hasConceptScore W4297423117C2129575 @default.
- W4297423117 hasConceptScore W4297423117C22550185 @default.
- W4297423117 hasConceptScore W4297423117C23123220 @default.
- W4297423117 hasConceptScore W4297423117C25810664 @default.
- W4297423117 hasConceptScore W4297423117C2776214188 @default.
- W4297423117 hasConceptScore W4297423117C41008148 @default.
- W4297423117 hasConceptScore W4297423117C78726541 @default.
- W4297423117 hasConceptScore W4297423117C98893333 @default.
- W4297423117 hasLocation W42974231171 @default.
- W4297423117 hasOpenAccess W4297423117 @default.
- W4297423117 hasPrimaryLocation W42974231171 @default.
- W4297423117 hasRelatedWork W141752127 @default.
- W4297423117 hasRelatedWork W1506177826 @default.
- W4297423117 hasRelatedWork W2008171362 @default.
- W4297423117 hasRelatedWork W2140812566 @default.
- W4297423117 hasRelatedWork W2184133400 @default.
- W4297423117 hasRelatedWork W2293073117 @default.
- W4297423117 hasRelatedWork W2373434917 @default.
- W4297423117 hasRelatedWork W2911326759 @default.
- W4297423117 hasRelatedWork W4232325861 @default.
- W4297423117 hasRelatedWork W4293690910 @default.
- W4297423117 hasVolume "20" @default.
- W4297423117 isParatext "false" @default.
- W4297423117 isRetracted "false" @default.
- W4297423117 workType "article" @default.