Matches in SemOpenAlex for { <https://semopenalex.org/work/W4297423497> ?p ?o ?g. }
- W4297423497 endingPage "7300" @default.
- W4297423497 startingPage "7300" @default.
- W4297423497 abstract "Mental workload (MW) represents the amount of brain resources required to perform concurrent tasks. The evaluation of MW is of paramount importance for Advanced Driver-Assistance Systems, given its correlation with traffic accidents risk. In the present research, two cognitive tests (Digit Span Test-DST and Ray Auditory Verbal Learning Test-RAVLT) were administered to participants while driving in a simulated environment. The tests were chosen to investigate the drivers' response to predefined levels of cognitive load to categorize the classes of MW. Infrared (IR) thermal imaging concurrently with heart rate variability (HRV) were used to obtain features related to the psychophysiology of the subjects, in order to feed machine learning (ML) classifiers. Six categories of models have been compared basing on unimodal IR/unimodal HRV/multimodal IR + HRV features. The best classifier performances were reached by the multimodal IR + HRV features-based classifiers (DST: accuracy = 73.1%, sensitivity = 0.71, specificity = 0.69; RAVLT: accuracy = 75.0%, average sensitivity = 0.75, average specificity = 0.87). The unimodal IR features based classifiers revealed high performances as well (DST: accuracy = 73.1%, sensitivity = 0.73, specificity = 0.73; RAVLT: accuracy = 71.1%, average sensitivity = 0.71, average specificity = 0.85). These results demonstrated the possibility to assess drivers' MW levels with high accuracy, also using a completely non-contact and non-invasive technique alone, representing a key advancement with respect to the state of the art in traffic accident prevention." @default.
- W4297423497 created "2022-09-28" @default.
- W4297423497 creator A5000194670 @default.
- W4297423497 creator A5003429297 @default.
- W4297423497 creator A5021621732 @default.
- W4297423497 creator A5022138918 @default.
- W4297423497 creator A5030589038 @default.
- W4297423497 creator A5036591005 @default.
- W4297423497 creator A5047366750 @default.
- W4297423497 creator A5048870996 @default.
- W4297423497 creator A5075895946 @default.
- W4297423497 creator A5078034334 @default.
- W4297423497 creator A5079071550 @default.
- W4297423497 creator A5090518907 @default.
- W4297423497 date "2022-09-26" @default.
- W4297423497 modified "2023-10-17" @default.
- W4297423497 title "Classification of Drivers’ Mental Workload Levels: Comparison of Machine Learning Methods Based on ECG and Infrared Thermal Signals" @default.
- W4297423497 cites W1487321909 @default.
- W4297423497 cites W1862394037 @default.
- W4297423497 cites W1981976602 @default.
- W4297423497 cites W1994262406 @default.
- W4297423497 cites W1998807199 @default.
- W4297423497 cites W1998985924 @default.
- W4297423497 cites W1999159861 @default.
- W4297423497 cites W2023133322 @default.
- W4297423497 cites W2038704458 @default.
- W4297423497 cites W2064238650 @default.
- W4297423497 cites W2066460280 @default.
- W4297423497 cites W2080340510 @default.
- W4297423497 cites W2089182319 @default.
- W4297423497 cites W2090858331 @default.
- W4297423497 cites W2130573544 @default.
- W4297423497 cites W2132532936 @default.
- W4297423497 cites W2141579073 @default.
- W4297423497 cites W2146805067 @default.
- W4297423497 cites W2155806188 @default.
- W4297423497 cites W2329765882 @default.
- W4297423497 cites W2339645138 @default.
- W4297423497 cites W2367096926 @default.
- W4297423497 cites W2371915244 @default.
- W4297423497 cites W2513386338 @default.
- W4297423497 cites W2572324811 @default.
- W4297423497 cites W2573966230 @default.
- W4297423497 cites W2574388714 @default.
- W4297423497 cites W2726799618 @default.
- W4297423497 cites W2734479400 @default.
- W4297423497 cites W2753954923 @default.
- W4297423497 cites W2755506150 @default.
- W4297423497 cites W2756291343 @default.
- W4297423497 cites W2759190050 @default.
- W4297423497 cites W2793138952 @default.
- W4297423497 cites W2801709500 @default.
- W4297423497 cites W2807244398 @default.
- W4297423497 cites W2810658541 @default.
- W4297423497 cites W2888833703 @default.
- W4297423497 cites W2890072046 @default.
- W4297423497 cites W2906324501 @default.
- W4297423497 cites W2912594198 @default.
- W4297423497 cites W2914482777 @default.
- W4297423497 cites W2937840282 @default.
- W4297423497 cites W2958541350 @default.
- W4297423497 cites W2966851358 @default.
- W4297423497 cites W2970602317 @default.
- W4297423497 cites W3020634498 @default.
- W4297423497 cites W3023211159 @default.
- W4297423497 cites W3060313783 @default.
- W4297423497 cites W3111976475 @default.
- W4297423497 cites W4234967753 @default.
- W4297423497 cites W4280548123 @default.
- W4297423497 cites W4283073771 @default.
- W4297423497 cites W4291982393 @default.
- W4297423497 cites W4376453192 @default.
- W4297423497 doi "https://doi.org/10.3390/s22197300" @default.
- W4297423497 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36236399" @default.
- W4297423497 hasPublicationYear "2022" @default.
- W4297423497 type Work @default.
- W4297423497 citedByCount "10" @default.
- W4297423497 countsByYear W42974234972022 @default.
- W4297423497 countsByYear W42974234972023 @default.
- W4297423497 crossrefType "journal-article" @default.
- W4297423497 hasAuthorship W4297423497A5000194670 @default.
- W4297423497 hasAuthorship W4297423497A5003429297 @default.
- W4297423497 hasAuthorship W4297423497A5021621732 @default.
- W4297423497 hasAuthorship W4297423497A5022138918 @default.
- W4297423497 hasAuthorship W4297423497A5030589038 @default.
- W4297423497 hasAuthorship W4297423497A5036591005 @default.
- W4297423497 hasAuthorship W4297423497A5047366750 @default.
- W4297423497 hasAuthorship W4297423497A5048870996 @default.
- W4297423497 hasAuthorship W4297423497A5075895946 @default.
- W4297423497 hasAuthorship W4297423497A5078034334 @default.
- W4297423497 hasAuthorship W4297423497A5079071550 @default.
- W4297423497 hasAuthorship W4297423497A5090518907 @default.
- W4297423497 hasBestOaLocation W42974234971 @default.
- W4297423497 hasConcept C111919701 @default.
- W4297423497 hasConcept C117220453 @default.
- W4297423497 hasConcept C119857082 @default.
- W4297423497 hasConcept C126838900 @default.
- W4297423497 hasConcept C127413603 @default.