Matches in SemOpenAlex for { <https://semopenalex.org/work/W4297426812> ?p ?o ?g. }
Showing items 1 to 67 of
67
with 100 items per page.
- W4297426812 abstract "Convolutional Neural Networks (CNNs) have been recently employed to solve problems from both the computer vision and medical image analysis fields. Despite their popularity, most approaches are only able to process 2D images while most medical data used in clinical practice consists of 3D volumes. In this work we propose an approach to 3D image segmentation based on a volumetric, fully convolutional, neural network. Our CNN is trained end-to-end on MRI volumes depicting prostate, and learns to predict segmentation for the whole volume at once. We introduce a novel objective function, that we optimise during training, based on Dice coefficient. In this way we can deal with situations where there is a strong imbalance between the number of foreground and background voxels. To cope with the limited number of annotated volumes available for training, we augment the data applying random non-linear transformations and histogram matching. We show in our experimental evaluation that our approach achieves good performances on challenging test data while requiring only a fraction of the processing time needed by other previous methods." @default.
- W4297426812 created "2022-09-28" @default.
- W4297426812 creator A5031842791 @default.
- W4297426812 creator A5046896448 @default.
- W4297426812 creator A5054234902 @default.
- W4297426812 date "2016-06-15" @default.
- W4297426812 modified "2023-09-23" @default.
- W4297426812 title "V-Net: Fully Convolutional Neural Networks for Volumetric Medical Image Segmentation" @default.
- W4297426812 doi "https://doi.org/10.48550/arxiv.1606.04797" @default.
- W4297426812 hasPublicationYear "2016" @default.
- W4297426812 type Work @default.
- W4297426812 citedByCount "5" @default.
- W4297426812 countsByYear W42974268122022 @default.
- W4297426812 countsByYear W42974268122023 @default.
- W4297426812 crossrefType "posted-content" @default.
- W4297426812 hasAuthorship W4297426812A5031842791 @default.
- W4297426812 hasAuthorship W4297426812A5046896448 @default.
- W4297426812 hasAuthorship W4297426812A5054234902 @default.
- W4297426812 hasBestOaLocation W42974268121 @default.
- W4297426812 hasConcept C105795698 @default.
- W4297426812 hasConcept C115961682 @default.
- W4297426812 hasConcept C124504099 @default.
- W4297426812 hasConcept C153180895 @default.
- W4297426812 hasConcept C154945302 @default.
- W4297426812 hasConcept C163892561 @default.
- W4297426812 hasConcept C165064840 @default.
- W4297426812 hasConcept C22029948 @default.
- W4297426812 hasConcept C2524010 @default.
- W4297426812 hasConcept C31972630 @default.
- W4297426812 hasConcept C33923547 @default.
- W4297426812 hasConcept C41008148 @default.
- W4297426812 hasConcept C53533937 @default.
- W4297426812 hasConcept C54170458 @default.
- W4297426812 hasConcept C81363708 @default.
- W4297426812 hasConcept C89600930 @default.
- W4297426812 hasConceptScore W4297426812C105795698 @default.
- W4297426812 hasConceptScore W4297426812C115961682 @default.
- W4297426812 hasConceptScore W4297426812C124504099 @default.
- W4297426812 hasConceptScore W4297426812C153180895 @default.
- W4297426812 hasConceptScore W4297426812C154945302 @default.
- W4297426812 hasConceptScore W4297426812C163892561 @default.
- W4297426812 hasConceptScore W4297426812C165064840 @default.
- W4297426812 hasConceptScore W4297426812C22029948 @default.
- W4297426812 hasConceptScore W4297426812C2524010 @default.
- W4297426812 hasConceptScore W4297426812C31972630 @default.
- W4297426812 hasConceptScore W4297426812C33923547 @default.
- W4297426812 hasConceptScore W4297426812C41008148 @default.
- W4297426812 hasConceptScore W4297426812C53533937 @default.
- W4297426812 hasConceptScore W4297426812C54170458 @default.
- W4297426812 hasConceptScore W4297426812C81363708 @default.
- W4297426812 hasConceptScore W4297426812C89600930 @default.
- W4297426812 hasLocation W42974268121 @default.
- W4297426812 hasOpenAccess W4297426812 @default.
- W4297426812 hasPrimaryLocation W42974268121 @default.
- W4297426812 hasRelatedWork W1573877189 @default.
- W4297426812 hasRelatedWork W1669643531 @default.
- W4297426812 hasRelatedWork W2607256519 @default.
- W4297426812 hasRelatedWork W2630229246 @default.
- W4297426812 hasRelatedWork W2673946014 @default.
- W4297426812 hasRelatedWork W2769435486 @default.
- W4297426812 hasRelatedWork W2962914239 @default.
- W4297426812 hasRelatedWork W2973136608 @default.
- W4297426812 hasRelatedWork W2999580839 @default.
- W4297426812 hasRelatedWork W3152950745 @default.
- W4297426812 isParatext "false" @default.
- W4297426812 isRetracted "false" @default.
- W4297426812 workType "article" @default.