Matches in SemOpenAlex for { <https://semopenalex.org/work/W4297464518> ?p ?o ?g. }
- W4297464518 endingPage "1587" @default.
- W4297464518 startingPage "1587" @default.
- W4297464518 abstract "In-vehicle air quality monitoring systems have been seen as promising paradigms for monitoring drivers’ conditions while they are driving. This is because some in-vehicle cabins contain pollutants that can cause drowsiness and fatigue to drivers. However, designing an efficient system that can predict in-vehicle air quality has challenges, due to the continuous variation in parameters in cabin environments. This paper presents a new approach, using deep learning techniques that can deal with the varying parameters inside the vehicle environment. In this case, two deep learning models, namely Long-short Term Memory (LSTM) and Gated Recurrent Unit (GRU) are applied to classify and predict the air quality using time-series data collected from the built-in sensor hardware. Both are compared with conventional methods of machine learning models, including Support Vector Regression (SVR) and Multi-layer Perceptron (MLP). The results show that GRU has an excellent prediction performance with the highest coefficient of determination value (R2) of 0.97." @default.
- W4297464518 created "2022-09-29" @default.
- W4297464518 creator A5014342555 @default.
- W4297464518 creator A5020175801 @default.
- W4297464518 creator A5037308871 @default.
- W4297464518 creator A5043255121 @default.
- W4297464518 creator A5044465736 @default.
- W4297464518 creator A5048416089 @default.
- W4297464518 creator A5083384945 @default.
- W4297464518 date "2022-09-28" @default.
- W4297464518 modified "2023-10-14" @default.
- W4297464518 title "Predictive Analysis of In-Vehicle Air Quality Monitoring System Using Deep Learning Technique" @default.
- W4297464518 cites W2065743849 @default.
- W4297464518 cites W2089734242 @default.
- W4297464518 cites W2149215089 @default.
- W4297464518 cites W2284195583 @default.
- W4297464518 cites W2509611708 @default.
- W4297464518 cites W2550441117 @default.
- W4297464518 cites W2583883916 @default.
- W4297464518 cites W2605065963 @default.
- W4297464518 cites W2618959359 @default.
- W4297464518 cites W2752155013 @default.
- W4297464518 cites W2766098680 @default.
- W4297464518 cites W2783332360 @default.
- W4297464518 cites W2794962407 @default.
- W4297464518 cites W2803689993 @default.
- W4297464518 cites W2805541293 @default.
- W4297464518 cites W2805637662 @default.
- W4297464518 cites W2899804003 @default.
- W4297464518 cites W2952957939 @default.
- W4297464518 cites W2954175968 @default.
- W4297464518 cites W2971446619 @default.
- W4297464518 cites W2980306787 @default.
- W4297464518 cites W2982520190 @default.
- W4297464518 cites W2983481197 @default.
- W4297464518 cites W2993051746 @default.
- W4297464518 cites W3003002598 @default.
- W4297464518 cites W3007246056 @default.
- W4297464518 cites W3010646376 @default.
- W4297464518 cites W3012957873 @default.
- W4297464518 cites W3022124280 @default.
- W4297464518 cites W3129047737 @default.
- W4297464518 cites W3137890612 @default.
- W4297464518 cites W3178821654 @default.
- W4297464518 cites W3184502126 @default.
- W4297464518 cites W4206340750 @default.
- W4297464518 cites W4234192264 @default.
- W4297464518 cites W2889946692 @default.
- W4297464518 doi "https://doi.org/10.3390/atmos13101587" @default.
- W4297464518 hasPublicationYear "2022" @default.
- W4297464518 type Work @default.
- W4297464518 citedByCount "0" @default.
- W4297464518 crossrefType "journal-article" @default.
- W4297464518 hasAuthorship W4297464518A5014342555 @default.
- W4297464518 hasAuthorship W4297464518A5020175801 @default.
- W4297464518 hasAuthorship W4297464518A5037308871 @default.
- W4297464518 hasAuthorship W4297464518A5043255121 @default.
- W4297464518 hasAuthorship W4297464518A5044465736 @default.
- W4297464518 hasAuthorship W4297464518A5048416089 @default.
- W4297464518 hasAuthorship W4297464518A5083384945 @default.
- W4297464518 hasBestOaLocation W42974645181 @default.
- W4297464518 hasConcept C108583219 @default.
- W4297464518 hasConcept C119857082 @default.
- W4297464518 hasConcept C121332964 @default.
- W4297464518 hasConcept C12267149 @default.
- W4297464518 hasConcept C126314574 @default.
- W4297464518 hasConcept C127413603 @default.
- W4297464518 hasConcept C153294291 @default.
- W4297464518 hasConcept C154945302 @default.
- W4297464518 hasConcept C179717631 @default.
- W4297464518 hasConcept C41008148 @default.
- W4297464518 hasConcept C50644808 @default.
- W4297464518 hasConcept C60908668 @default.
- W4297464518 hasConceptScore W4297464518C108583219 @default.
- W4297464518 hasConceptScore W4297464518C119857082 @default.
- W4297464518 hasConceptScore W4297464518C121332964 @default.
- W4297464518 hasConceptScore W4297464518C12267149 @default.
- W4297464518 hasConceptScore W4297464518C126314574 @default.
- W4297464518 hasConceptScore W4297464518C127413603 @default.
- W4297464518 hasConceptScore W4297464518C153294291 @default.
- W4297464518 hasConceptScore W4297464518C154945302 @default.
- W4297464518 hasConceptScore W4297464518C179717631 @default.
- W4297464518 hasConceptScore W4297464518C41008148 @default.
- W4297464518 hasConceptScore W4297464518C50644808 @default.
- W4297464518 hasConceptScore W4297464518C60908668 @default.
- W4297464518 hasIssue "10" @default.
- W4297464518 hasLocation W42974645181 @default.
- W4297464518 hasLocation W42974645182 @default.
- W4297464518 hasOpenAccess W4297464518 @default.
- W4297464518 hasPrimaryLocation W42974645181 @default.
- W4297464518 hasRelatedWork W1501213224 @default.
- W4297464518 hasRelatedWork W2924231309 @default.
- W4297464518 hasRelatedWork W2991591812 @default.
- W4297464518 hasRelatedWork W3168994312 @default.
- W4297464518 hasRelatedWork W3186155701 @default.
- W4297464518 hasRelatedWork W3211546796 @default.
- W4297464518 hasRelatedWork W4231994957 @default.
- W4297464518 hasRelatedWork W4285741730 @default.