Matches in SemOpenAlex for { <https://semopenalex.org/work/W4297473172> ?p ?o ?g. }
- W4297473172 endingPage "134" @default.
- W4297473172 startingPage "123" @default.
- W4297473172 abstract "Supervised machine learning approaches require the formulation of a loss functional to be minimized in the training phase. Sequential data are ubiquitous across many fields of research, and are often treated with Euclidean distance-based loss functions that were designed for tabular data. For smooth oscillatory data, those conventional approaches lack the ability to penalize amplitude, frequency and phase prediction errors at the same time, and tend to be biased towards amplitude errors. We introduce the surface similarity parameter (SSP) as a novel loss function that is especially useful for training machine learning models on smooth oscillatory sequences. Our extensive experiments on chaotic spatio-temporal dynamical systems indicate that the SSP is beneficial for shaping gradients, thereby accelerating the training process, reducing the final prediction error, increasing weight initialization robustness, and implementing a stronger regularization effect compared to using classical loss functions. The results indicate the potential of the novel loss metric particularly for highly complex and chaotic data, such as data stemming from the nonlinear two-dimensional Kuramoto–Sivashinsky equation and the linear propagation of dispersive surface gravity waves in fluids." @default.
- W4297473172 created "2022-09-29" @default.
- W4297473172 creator A5025362201 @default.
- W4297473172 creator A5040724969 @default.
- W4297473172 creator A5063646250 @default.
- W4297473172 creator A5076331500 @default.
- W4297473172 creator A5079666693 @default.
- W4297473172 date "2022-12-01" @default.
- W4297473172 modified "2023-09-29" @default.
- W4297473172 title "Surface similarity parameter: A new machine learning loss metric for oscillatory spatio-temporal data" @default.
- W4297473172 cites W1994616650 @default.
- W4297473172 cites W2009082127 @default.
- W4297473172 cites W2009797711 @default.
- W4297473172 cites W2046033161 @default.
- W4297473172 cites W2061171222 @default.
- W4297473172 cites W2064675550 @default.
- W4297473172 cites W2065400254 @default.
- W4297473172 cites W2555077524 @default.
- W4297473172 cites W2745110207 @default.
- W4297473172 cites W2765128778 @default.
- W4297473172 cites W2782714865 @default.
- W4297473172 cites W2891039272 @default.
- W4297473172 cites W2892035503 @default.
- W4297473172 cites W2901265633 @default.
- W4297473172 cites W2905542394 @default.
- W4297473172 cites W2919115771 @default.
- W4297473172 cites W2944829920 @default.
- W4297473172 cites W2962723334 @default.
- W4297473172 cites W2963398037 @default.
- W4297473172 cites W3000529618 @default.
- W4297473172 cites W3012621877 @default.
- W4297473172 cites W3049397905 @default.
- W4297473172 cites W3100974552 @default.
- W4297473172 cites W3172582066 @default.
- W4297473172 cites W3173369353 @default.
- W4297473172 cites W3175939654 @default.
- W4297473172 doi "https://doi.org/10.1016/j.neunet.2022.09.023" @default.
- W4297473172 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36257069" @default.
- W4297473172 hasPublicationYear "2022" @default.
- W4297473172 type Work @default.
- W4297473172 citedByCount "3" @default.
- W4297473172 countsByYear W42974731722023 @default.
- W4297473172 crossrefType "journal-article" @default.
- W4297473172 hasAuthorship W4297473172A5025362201 @default.
- W4297473172 hasAuthorship W4297473172A5040724969 @default.
- W4297473172 hasAuthorship W4297473172A5063646250 @default.
- W4297473172 hasAuthorship W4297473172A5076331500 @default.
- W4297473172 hasAuthorship W4297473172A5079666693 @default.
- W4297473172 hasBestOaLocation W42974731722 @default.
- W4297473172 hasConcept C104317684 @default.
- W4297473172 hasConcept C11413529 @default.
- W4297473172 hasConcept C114466953 @default.
- W4297473172 hasConcept C120174047 @default.
- W4297473172 hasConcept C121332964 @default.
- W4297473172 hasConcept C154945302 @default.
- W4297473172 hasConcept C162324750 @default.
- W4297473172 hasConcept C176217482 @default.
- W4297473172 hasConcept C180205008 @default.
- W4297473172 hasConcept C185592680 @default.
- W4297473172 hasConcept C199360897 @default.
- W4297473172 hasConcept C21547014 @default.
- W4297473172 hasConcept C2776135515 @default.
- W4297473172 hasConcept C2777052490 @default.
- W4297473172 hasConcept C33923547 @default.
- W4297473172 hasConcept C41008148 @default.
- W4297473172 hasConcept C55493867 @default.
- W4297473172 hasConcept C62520636 @default.
- W4297473172 hasConcept C63479239 @default.
- W4297473172 hasConceptScore W4297473172C104317684 @default.
- W4297473172 hasConceptScore W4297473172C11413529 @default.
- W4297473172 hasConceptScore W4297473172C114466953 @default.
- W4297473172 hasConceptScore W4297473172C120174047 @default.
- W4297473172 hasConceptScore W4297473172C121332964 @default.
- W4297473172 hasConceptScore W4297473172C154945302 @default.
- W4297473172 hasConceptScore W4297473172C162324750 @default.
- W4297473172 hasConceptScore W4297473172C176217482 @default.
- W4297473172 hasConceptScore W4297473172C180205008 @default.
- W4297473172 hasConceptScore W4297473172C185592680 @default.
- W4297473172 hasConceptScore W4297473172C199360897 @default.
- W4297473172 hasConceptScore W4297473172C21547014 @default.
- W4297473172 hasConceptScore W4297473172C2776135515 @default.
- W4297473172 hasConceptScore W4297473172C2777052490 @default.
- W4297473172 hasConceptScore W4297473172C33923547 @default.
- W4297473172 hasConceptScore W4297473172C41008148 @default.
- W4297473172 hasConceptScore W4297473172C55493867 @default.
- W4297473172 hasConceptScore W4297473172C62520636 @default.
- W4297473172 hasConceptScore W4297473172C63479239 @default.
- W4297473172 hasLocation W42974731721 @default.
- W4297473172 hasLocation W42974731722 @default.
- W4297473172 hasLocation W42974731723 @default.
- W4297473172 hasLocation W42974731724 @default.
- W4297473172 hasOpenAccess W4297473172 @default.
- W4297473172 hasPrimaryLocation W42974731721 @default.
- W4297473172 hasRelatedWork W2072565696 @default.
- W4297473172 hasRelatedWork W2079134138 @default.
- W4297473172 hasRelatedWork W2169612639 @default.
- W4297473172 hasRelatedWork W2374442885 @default.
- W4297473172 hasRelatedWork W2374512474 @default.