Matches in SemOpenAlex for { <https://semopenalex.org/work/W4297478853> ?p ?o ?g. }
Showing items 1 to 88 of
88
with 100 items per page.
- W4297478853 endingPage "181" @default.
- W4297478853 startingPage "169" @default.
- W4297478853 abstract "The automatic detection of noisy channels in surface Electromyogram (sEMG) signals, at the time of recording, is very critical in making a noise-free EMG dataset. If an EMG signal contaminated by high-level noise is recorded, then it will be useless and can’t be used for any healthcare application. In this research work, a new machine learning-based paradigm is proposed to automate the detection of low-level and high-level noises occurring in different channels of high density and multi-channel sEMG signals. A modified version of mel frequency cepstral coefficients (mMFCC) is proposed for the extraction of features from sEMG channels along with other statistical parameters i-e complexity coefficient, hurst exponent, and root mean square. Several state-of-the-art classifiers such as Support Vector Machine (SVM), Ensemble Bagged Trees, Ensemble Subspace Discriminant, and Logistic Regression are used to automatically identify an EMG channel either bad or good based on these extracted features. Comparison-based analyses of these classifiers have also been considered based on total classification accuracy, prediction speed (observations/sec), and processing time. The proposed method is tested on 320 simulated EMG channels as well as 640 experimental EMG channels. SVM is used as our main classifier for the detection of noisy channels which gives a total classification accuracy of 99.4% for simulated EMG channels whereas accuracy of 98.9% is achieved for experimental EMG channels." @default.
- W4297478853 created "2022-09-29" @default.
- W4297478853 creator A5012655817 @default.
- W4297478853 creator A5016082109 @default.
- W4297478853 creator A5023726178 @default.
- W4297478853 creator A5054429264 @default.
- W4297478853 creator A5063007722 @default.
- W4297478853 creator A5065664933 @default.
- W4297478853 creator A5069745149 @default.
- W4297478853 creator A5081221633 @default.
- W4297478853 creator A5091241821 @default.
- W4297478853 date "2023-01-01" @default.
- W4297478853 modified "2023-09-26" @default.
- W4297478853 title "Automatic Detection of Outliers in Multi-Channel EMG Signals Using MFCC and SVM" @default.
- W4297478853 cites W1557007175 @default.
- W4297478853 cites W1977596823 @default.
- W4297478853 cites W2002499457 @default.
- W4297478853 cites W2036460498 @default.
- W4297478853 cites W2044346482 @default.
- W4297478853 cites W2107142258 @default.
- W4297478853 cites W2137130182 @default.
- W4297478853 cites W2137328376 @default.
- W4297478853 cites W2148146281 @default.
- W4297478853 doi "https://doi.org/10.32604/iasc.2023.032337" @default.
- W4297478853 hasPublicationYear "2023" @default.
- W4297478853 type Work @default.
- W4297478853 citedByCount "0" @default.
- W4297478853 crossrefType "journal-article" @default.
- W4297478853 hasAuthorship W4297478853A5012655817 @default.
- W4297478853 hasAuthorship W4297478853A5016082109 @default.
- W4297478853 hasAuthorship W4297478853A5023726178 @default.
- W4297478853 hasAuthorship W4297478853A5054429264 @default.
- W4297478853 hasAuthorship W4297478853A5063007722 @default.
- W4297478853 hasAuthorship W4297478853A5065664933 @default.
- W4297478853 hasAuthorship W4297478853A5069745149 @default.
- W4297478853 hasAuthorship W4297478853A5081221633 @default.
- W4297478853 hasAuthorship W4297478853A5091241821 @default.
- W4297478853 hasBestOaLocation W42974788531 @default.
- W4297478853 hasConcept C115961682 @default.
- W4297478853 hasConcept C12267149 @default.
- W4297478853 hasConcept C127162648 @default.
- W4297478853 hasConcept C151989614 @default.
- W4297478853 hasConcept C153180895 @default.
- W4297478853 hasConcept C154945302 @default.
- W4297478853 hasConcept C28490314 @default.
- W4297478853 hasConcept C31258907 @default.
- W4297478853 hasConcept C32834561 @default.
- W4297478853 hasConcept C41008148 @default.
- W4297478853 hasConcept C52622490 @default.
- W4297478853 hasConcept C69738355 @default.
- W4297478853 hasConcept C79337645 @default.
- W4297478853 hasConcept C95623464 @default.
- W4297478853 hasConcept C99498987 @default.
- W4297478853 hasConceptScore W4297478853C115961682 @default.
- W4297478853 hasConceptScore W4297478853C12267149 @default.
- W4297478853 hasConceptScore W4297478853C127162648 @default.
- W4297478853 hasConceptScore W4297478853C151989614 @default.
- W4297478853 hasConceptScore W4297478853C153180895 @default.
- W4297478853 hasConceptScore W4297478853C154945302 @default.
- W4297478853 hasConceptScore W4297478853C28490314 @default.
- W4297478853 hasConceptScore W4297478853C31258907 @default.
- W4297478853 hasConceptScore W4297478853C32834561 @default.
- W4297478853 hasConceptScore W4297478853C41008148 @default.
- W4297478853 hasConceptScore W4297478853C52622490 @default.
- W4297478853 hasConceptScore W4297478853C69738355 @default.
- W4297478853 hasConceptScore W4297478853C79337645 @default.
- W4297478853 hasConceptScore W4297478853C95623464 @default.
- W4297478853 hasConceptScore W4297478853C99498987 @default.
- W4297478853 hasIssue "1" @default.
- W4297478853 hasLocation W42974788531 @default.
- W4297478853 hasOpenAccess W4297478853 @default.
- W4297478853 hasPrimaryLocation W42974788531 @default.
- W4297478853 hasRelatedWork W2022684485 @default.
- W4297478853 hasRelatedWork W2134472250 @default.
- W4297478853 hasRelatedWork W2146076056 @default.
- W4297478853 hasRelatedWork W2296543338 @default.
- W4297478853 hasRelatedWork W2336974148 @default.
- W4297478853 hasRelatedWork W2811390910 @default.
- W4297478853 hasRelatedWork W2944008297 @default.
- W4297478853 hasRelatedWork W3140062818 @default.
- W4297478853 hasRelatedWork W3165453100 @default.
- W4297478853 hasRelatedWork W2345184372 @default.
- W4297478853 hasVolume "36" @default.
- W4297478853 isParatext "false" @default.
- W4297478853 isRetracted "false" @default.
- W4297478853 workType "article" @default.