Matches in SemOpenAlex for { <https://semopenalex.org/work/W4297491405> ?p ?o ?g. }
- W4297491405 endingPage "7330" @default.
- W4297491405 startingPage "7330" @default.
- W4297491405 abstract "With the development of industrial manufacturing intelligence, the role of rotating machinery in industrial production and life is more and more important. Aiming at the problems of the complex and changeable working environment of rolling bearings and limited computing ability, fault feature information cannot be effectively extracted, and the current deep learning model is difficult to be compatible with lightweight and high efficiency. Therefore, this paper proposes a fault detection method for power equipment based on an energy spectrum diagram and deep learning. Firstly, a novel two-dimensional time-frequency feature representation method and energy spectrum feature map based on wavelet packet transform is proposed, and an energy spectrum feature map dataset is made for subsequent diagnosis. This method can realize multi-resolution analysis, fully extract the feature information contained in the fault signal, and accelerate the convergence of the subsequent diagnosis model. Secondly, a lightweight residual dense convolutional neural network model (LR-DenseNet) is proposed. This model combines the advantages of residual learning and a dense connection, and can not only extract deep features more easily, but can also effectively use shallow features. Then, based on the lightweight residual dense convolutional neural network model, an LR-DenseSENet model is proposed. By introducing the transfer learning strategy and adding the channel domain, an attention mechanism is added to the channel feature fusion layer, with the accuracy of detection up to 99.4%, and the amount of parameter calculation greatly reduced to one-fifth of that of VGG. Finally, through an experimental analysis, it is verified that the fault detection model designed in this paper based on the combination of an energy spectrum feature map and LR-DenseSENet achieves a satisfactory detection effect." @default.
- W4297491405 created "2022-09-29" @default.
- W4297491405 creator A5001431051 @default.
- W4297491405 creator A5005228021 @default.
- W4297491405 creator A5029849493 @default.
- W4297491405 creator A5063408400 @default.
- W4297491405 creator A5067872820 @default.
- W4297491405 date "2022-09-27" @default.
- W4297491405 modified "2023-10-18" @default.
- W4297491405 title "Power Equipment Fault Diagnosis Method Based on Energy Spectrogram and Deep Learning" @default.
- W4297491405 cites W1937731213 @default.
- W4297491405 cites W1987444808 @default.
- W4297491405 cites W2007201636 @default.
- W4297491405 cites W2030276507 @default.
- W4297491405 cites W2063922127 @default.
- W4297491405 cites W2064642190 @default.
- W4297491405 cites W2083102256 @default.
- W4297491405 cites W2116160951 @default.
- W4297491405 cites W2557478438 @default.
- W4297491405 cites W2593924300 @default.
- W4297491405 cites W2593976926 @default.
- W4297491405 cites W2747276445 @default.
- W4297491405 cites W2885065519 @default.
- W4297491405 cites W2902311642 @default.
- W4297491405 cites W2919080944 @default.
- W4297491405 cites W2944851425 @default.
- W4297491405 cites W2968576260 @default.
- W4297491405 cites W3004546246 @default.
- W4297491405 cites W3020437557 @default.
- W4297491405 cites W3042354547 @default.
- W4297491405 cites W3043574526 @default.
- W4297491405 cites W3048038429 @default.
- W4297491405 cites W3094686023 @default.
- W4297491405 cites W3110160782 @default.
- W4297491405 cites W3155807144 @default.
- W4297491405 cites W3160750548 @default.
- W4297491405 cites W3161779450 @default.
- W4297491405 cites W3163304755 @default.
- W4297491405 cites W3166846061 @default.
- W4297491405 cites W3171771940 @default.
- W4297491405 cites W3204624331 @default.
- W4297491405 cites W3204812350 @default.
- W4297491405 cites W3213560988 @default.
- W4297491405 cites W4205992740 @default.
- W4297491405 cites W4285065952 @default.
- W4297491405 doi "https://doi.org/10.3390/s22197330" @default.
- W4297491405 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36236431" @default.
- W4297491405 hasPublicationYear "2022" @default.
- W4297491405 type Work @default.
- W4297491405 citedByCount "0" @default.
- W4297491405 crossrefType "journal-article" @default.
- W4297491405 hasAuthorship W4297491405A5001431051 @default.
- W4297491405 hasAuthorship W4297491405A5005228021 @default.
- W4297491405 hasAuthorship W4297491405A5029849493 @default.
- W4297491405 hasAuthorship W4297491405A5063408400 @default.
- W4297491405 hasAuthorship W4297491405A5067872820 @default.
- W4297491405 hasBestOaLocation W42974914051 @default.
- W4297491405 hasConcept C105795698 @default.
- W4297491405 hasConcept C108583219 @default.
- W4297491405 hasConcept C11413529 @default.
- W4297491405 hasConcept C127162648 @default.
- W4297491405 hasConcept C127313418 @default.
- W4297491405 hasConcept C138885662 @default.
- W4297491405 hasConcept C152745839 @default.
- W4297491405 hasConcept C153180895 @default.
- W4297491405 hasConcept C154945302 @default.
- W4297491405 hasConcept C155512373 @default.
- W4297491405 hasConcept C155777637 @default.
- W4297491405 hasConcept C165205528 @default.
- W4297491405 hasConcept C172707124 @default.
- W4297491405 hasConcept C175551986 @default.
- W4297491405 hasConcept C186370098 @default.
- W4297491405 hasConcept C196216189 @default.
- W4297491405 hasConcept C2776401178 @default.
- W4297491405 hasConcept C31258907 @default.
- W4297491405 hasConcept C33923547 @default.
- W4297491405 hasConcept C41008148 @default.
- W4297491405 hasConcept C41895202 @default.
- W4297491405 hasConcept C45273575 @default.
- W4297491405 hasConcept C47432892 @default.
- W4297491405 hasConcept C59404180 @default.
- W4297491405 hasConcept C81363708 @default.
- W4297491405 hasConceptScore W4297491405C105795698 @default.
- W4297491405 hasConceptScore W4297491405C108583219 @default.
- W4297491405 hasConceptScore W4297491405C11413529 @default.
- W4297491405 hasConceptScore W4297491405C127162648 @default.
- W4297491405 hasConceptScore W4297491405C127313418 @default.
- W4297491405 hasConceptScore W4297491405C138885662 @default.
- W4297491405 hasConceptScore W4297491405C152745839 @default.
- W4297491405 hasConceptScore W4297491405C153180895 @default.
- W4297491405 hasConceptScore W4297491405C154945302 @default.
- W4297491405 hasConceptScore W4297491405C155512373 @default.
- W4297491405 hasConceptScore W4297491405C155777637 @default.
- W4297491405 hasConceptScore W4297491405C165205528 @default.
- W4297491405 hasConceptScore W4297491405C172707124 @default.
- W4297491405 hasConceptScore W4297491405C175551986 @default.
- W4297491405 hasConceptScore W4297491405C186370098 @default.
- W4297491405 hasConceptScore W4297491405C196216189 @default.