Matches in SemOpenAlex for { <https://semopenalex.org/work/W4297496152> ?p ?o ?g. }
- W4297496152 endingPage "543" @default.
- W4297496152 startingPage "533" @default.
- W4297496152 abstract "AbstractThis work highlights the scope machine learning approaches in Mobile Wireless Sensor Networks. As Mobile Wireless Sensor Network faces numerous challenges in terms of energy conservation, data collection and aggregation, fault tolerance, QoS. Sink Mobility, etc. Machine learning is the branch of Artificial intelligence used to analyse data for making predictions, so as to get the optimized results. Here, work shows how the machine learning approaches can be used in sensor networks to improve network performance by extending lifetime, data collection and aggregation, handling mobility of sink node, QOS, fault tolerance, etc.KeywordsMobile wireless sensor networksMachine learningArtificial intelligenceData aggregationData collection" @default.
- W4297496152 created "2022-09-29" @default.
- W4297496152 creator A5027212394 @default.
- W4297496152 creator A5063786610 @default.
- W4297496152 creator A5087385660 @default.
- W4297496152 date "2022-09-29" @default.
- W4297496152 modified "2023-09-27" @default.
- W4297496152 title "Scope of Machine Learning in Mobile Wireless Sensor Networks" @default.
- W4297496152 cites W1605106855 @default.
- W4297496152 cites W1858904274 @default.
- W4297496152 cites W2037041815 @default.
- W4297496152 cites W2049287639 @default.
- W4297496152 cites W2082384736 @default.
- W4297496152 cites W2084324567 @default.
- W4297496152 cites W2119548540 @default.
- W4297496152 cites W2122904721 @default.
- W4297496152 cites W2141527672 @default.
- W4297496152 cites W2207718193 @default.
- W4297496152 cites W2219783692 @default.
- W4297496152 cites W2239060899 @default.
- W4297496152 cites W2275153904 @default.
- W4297496152 cites W2291374946 @default.
- W4297496152 cites W2308542339 @default.
- W4297496152 cites W2343723090 @default.
- W4297496152 cites W2479745883 @default.
- W4297496152 cites W2501521689 @default.
- W4297496152 cites W2510671595 @default.
- W4297496152 cites W2517011545 @default.
- W4297496152 cites W2537850368 @default.
- W4297496152 cites W2545689046 @default.
- W4297496152 cites W2568976585 @default.
- W4297496152 cites W2569882818 @default.
- W4297496152 cites W2583641703 @default.
- W4297496152 cites W2596447600 @default.
- W4297496152 cites W2615863319 @default.
- W4297496152 cites W2759290466 @default.
- W4297496152 cites W2759436136 @default.
- W4297496152 cites W2767035496 @default.
- W4297496152 cites W2767036867 @default.
- W4297496152 cites W2769535036 @default.
- W4297496152 cites W2773896793 @default.
- W4297496152 cites W2787091309 @default.
- W4297496152 cites W2889276972 @default.
- W4297496152 cites W2915853293 @default.
- W4297496152 cites W2944880973 @default.
- W4297496152 cites W2986607433 @default.
- W4297496152 cites W3003027058 @default.
- W4297496152 cites W3015837893 @default.
- W4297496152 cites W3100857292 @default.
- W4297496152 cites W3107418562 @default.
- W4297496152 cites W3144240269 @default.
- W4297496152 cites W4243628198 @default.
- W4297496152 doi "https://doi.org/10.1007/978-981-19-4193-1_52" @default.
- W4297496152 hasPublicationYear "2022" @default.
- W4297496152 type Work @default.
- W4297496152 citedByCount "0" @default.
- W4297496152 crossrefType "book-chapter" @default.
- W4297496152 hasAuthorship W4297496152A5027212394 @default.
- W4297496152 hasAuthorship W4297496152A5063786610 @default.
- W4297496152 hasAuthorship W4297496152A5087385660 @default.
- W4297496152 hasConcept C105795698 @default.
- W4297496152 hasConcept C108037233 @default.
- W4297496152 hasConcept C119857082 @default.
- W4297496152 hasConcept C120314980 @default.
- W4297496152 hasConcept C133462117 @default.
- W4297496152 hasConcept C154945302 @default.
- W4297496152 hasConcept C199360897 @default.
- W4297496152 hasConcept C24590314 @default.
- W4297496152 hasConcept C2778012447 @default.
- W4297496152 hasConcept C31258907 @default.
- W4297496152 hasConcept C33923547 @default.
- W4297496152 hasConcept C41008148 @default.
- W4297496152 hasConcept C41971633 @default.
- W4297496152 hasConcept C5119721 @default.
- W4297496152 hasConcept C555944384 @default.
- W4297496152 hasConcept C63540848 @default.
- W4297496152 hasConcept C7091991 @default.
- W4297496152 hasConcept C76155785 @default.
- W4297496152 hasConceptScore W4297496152C105795698 @default.
- W4297496152 hasConceptScore W4297496152C108037233 @default.
- W4297496152 hasConceptScore W4297496152C119857082 @default.
- W4297496152 hasConceptScore W4297496152C120314980 @default.
- W4297496152 hasConceptScore W4297496152C133462117 @default.
- W4297496152 hasConceptScore W4297496152C154945302 @default.
- W4297496152 hasConceptScore W4297496152C199360897 @default.
- W4297496152 hasConceptScore W4297496152C24590314 @default.
- W4297496152 hasConceptScore W4297496152C2778012447 @default.
- W4297496152 hasConceptScore W4297496152C31258907 @default.
- W4297496152 hasConceptScore W4297496152C33923547 @default.
- W4297496152 hasConceptScore W4297496152C41008148 @default.
- W4297496152 hasConceptScore W4297496152C41971633 @default.
- W4297496152 hasConceptScore W4297496152C5119721 @default.
- W4297496152 hasConceptScore W4297496152C555944384 @default.
- W4297496152 hasConceptScore W4297496152C63540848 @default.
- W4297496152 hasConceptScore W4297496152C7091991 @default.
- W4297496152 hasConceptScore W4297496152C76155785 @default.
- W4297496152 hasLocation W42974961521 @default.
- W4297496152 hasOpenAccess W4297496152 @default.