Matches in SemOpenAlex for { <https://semopenalex.org/work/W4297496658> ?p ?o ?g. }
Showing items 1 to 75 of
75
with 100 items per page.
- W4297496658 abstract "Abstract This work illustrates Artificial neural network (ANN) based energy modelling and forecasting of a 5MW Solar Photo Voltaic Plant. The objective of the research work is to identify the impact of various atmospheric parameters on the Solar PV energy generation. The Simulation was performed using Neural network(nn) tool box in MATLAB simulation. The input parameters are total solar radiation, surface pressure, wind speed, Insolation Clearness Index, cloud amount, shortwave diffuse irradiance and total insolation index which were collected from National Renewable Energy Laboratory (NREL) database. The output parameters were collected from five-year production data of 5 MW solar PV plant in Tamilnadu, India. Six different network structures namely Cascade forward backdrop, ELMAN back prop, Feed forward back prop, Feed forward Distribute Time delay, Layer current and Regression Analysis were used. Individual models have been developed using above ANN structures and results are analysed. The model validation has been performed by comparing model predictions with power output data during the testing. Single input weather parameters have been fed and tested to find the impact of individual weather parameter on the power output of the plant. Multiple input parameters are fed and tested for improving the model. Regression analysis has shown a better performance comparing with other networks. These solar forecasting techniques help to design the electrical storage management and plan maintenance activities of smart grid system." @default.
- W4297496658 created "2022-09-29" @default.
- W4297496658 creator A5012161953 @default.
- W4297496658 creator A5041238521 @default.
- W4297496658 creator A5054394549 @default.
- W4297496658 date "2022-09-28" @default.
- W4297496658 modified "2023-09-30" @default.
- W4297496658 title "Modelling and Forecasting of 5MW Solar Photovoltaic Plant using Artificial Neural Networks" @default.
- W4297496658 cites W1989726836 @default.
- W4297496658 cites W2024638371 @default.
- W4297496658 cites W2061067645 @default.
- W4297496658 cites W2107069803 @default.
- W4297496658 cites W2413982009 @default.
- W4297496658 cites W2982245297 @default.
- W4297496658 cites W3041794582 @default.
- W4297496658 cites W3123549188 @default.
- W4297496658 doi "https://doi.org/10.21203/rs.3.rs-2027546/v1" @default.
- W4297496658 hasPublicationYear "2022" @default.
- W4297496658 type Work @default.
- W4297496658 citedByCount "0" @default.
- W4297496658 crossrefType "posted-content" @default.
- W4297496658 hasAuthorship W4297496658A5012161953 @default.
- W4297496658 hasAuthorship W4297496658A5041238521 @default.
- W4297496658 hasAuthorship W4297496658A5054394549 @default.
- W4297496658 hasBestOaLocation W42974966581 @default.
- W4297496658 hasConcept C119599485 @default.
- W4297496658 hasConcept C121332964 @default.
- W4297496658 hasConcept C127413603 @default.
- W4297496658 hasConcept C153294291 @default.
- W4297496658 hasConcept C154945302 @default.
- W4297496658 hasConcept C163258240 @default.
- W4297496658 hasConcept C188573790 @default.
- W4297496658 hasConcept C205649164 @default.
- W4297496658 hasConcept C39432304 @default.
- W4297496658 hasConcept C41008148 @default.
- W4297496658 hasConcept C41291067 @default.
- W4297496658 hasConcept C423512 @default.
- W4297496658 hasConcept C44154836 @default.
- W4297496658 hasConcept C50644808 @default.
- W4297496658 hasConcept C541104983 @default.
- W4297496658 hasConcept C62520636 @default.
- W4297496658 hasConcept C9695528 @default.
- W4297496658 hasConceptScore W4297496658C119599485 @default.
- W4297496658 hasConceptScore W4297496658C121332964 @default.
- W4297496658 hasConceptScore W4297496658C127413603 @default.
- W4297496658 hasConceptScore W4297496658C153294291 @default.
- W4297496658 hasConceptScore W4297496658C154945302 @default.
- W4297496658 hasConceptScore W4297496658C163258240 @default.
- W4297496658 hasConceptScore W4297496658C188573790 @default.
- W4297496658 hasConceptScore W4297496658C205649164 @default.
- W4297496658 hasConceptScore W4297496658C39432304 @default.
- W4297496658 hasConceptScore W4297496658C41008148 @default.
- W4297496658 hasConceptScore W4297496658C41291067 @default.
- W4297496658 hasConceptScore W4297496658C423512 @default.
- W4297496658 hasConceptScore W4297496658C44154836 @default.
- W4297496658 hasConceptScore W4297496658C50644808 @default.
- W4297496658 hasConceptScore W4297496658C541104983 @default.
- W4297496658 hasConceptScore W4297496658C62520636 @default.
- W4297496658 hasConceptScore W4297496658C9695528 @default.
- W4297496658 hasLocation W42974966581 @default.
- W4297496658 hasOpenAccess W4297496658 @default.
- W4297496658 hasPrimaryLocation W42974966581 @default.
- W4297496658 hasRelatedWork W1998103909 @default.
- W4297496658 hasRelatedWork W2088066448 @default.
- W4297496658 hasRelatedWork W237578963 @default.
- W4297496658 hasRelatedWork W2904397074 @default.
- W4297496658 hasRelatedWork W2910971636 @default.
- W4297496658 hasRelatedWork W3007304490 @default.
- W4297496658 hasRelatedWork W3113374182 @default.
- W4297496658 hasRelatedWork W3174291815 @default.
- W4297496658 hasRelatedWork W4205272946 @default.
- W4297496658 hasRelatedWork W2402441045 @default.
- W4297496658 isParatext "false" @default.
- W4297496658 isRetracted "false" @default.
- W4297496658 workType "article" @default.