Matches in SemOpenAlex for { <https://semopenalex.org/work/W4297499176> ?p ?o ?g. }
- W4297499176 endingPage "106024" @default.
- W4297499176 startingPage "106024" @default.
- W4297499176 abstract "Chiral metasurfaces have been widely used in sensing, imaging and other fields because they can manipulate light through the efficient circular dichroism (CD). However, its on-demand design is still a very challenging task. In this work, we propose an on-demand multiple reverse design based on deep learning, named target-driven conditional generative network (TCGN). It can reverse design the metasurface structure that meets the required CD, and its mean square error (MAE) is 0.0089. We use this method to inversely design multiple sets of metasurfaces with different structures, and all their CD values can exceed 0.36. Both simulations and experiments prove the feasibility and effectiveness of using deep learning to reverse design metasurfaces. In addition, the designed metasurface can realize chiral wavefront control under dual frequency. This design method based on deep learning can rapidly and efficiently design the chiral metasurfaces, which provides a new way for the design of metasurfaces." @default.
- W4297499176 created "2022-09-29" @default.
- W4297499176 creator A5014629413 @default.
- W4297499176 creator A5014742051 @default.
- W4297499176 creator A5026828904 @default.
- W4297499176 creator A5039331322 @default.
- W4297499176 creator A5045028595 @default.
- W4297499176 creator A5055509734 @default.
- W4297499176 creator A5068252474 @default.
- W4297499176 creator A5069416461 @default.
- W4297499176 creator A5076673661 @default.
- W4297499176 date "2022-11-01" @default.
- W4297499176 modified "2023-10-01" @default.
- W4297499176 title "On-demand design based on deep learning and phase manipulation of all-silicon terahertz chiral metasurfaces" @default.
- W4297499176 cites W1488007836 @default.
- W4297499176 cites W1994101913 @default.
- W4297499176 cites W1995575412 @default.
- W4297499176 cites W2018632921 @default.
- W4297499176 cites W2088447964 @default.
- W4297499176 cites W2125621954 @default.
- W4297499176 cites W2126365996 @default.
- W4297499176 cites W2151024359 @default.
- W4297499176 cites W2346312220 @default.
- W4297499176 cites W2502949459 @default.
- W4297499176 cites W2527457341 @default.
- W4297499176 cites W2582187633 @default.
- W4297499176 cites W2618530766 @default.
- W4297499176 cites W2766979363 @default.
- W4297499176 cites W2803281408 @default.
- W4297499176 cites W2806536390 @default.
- W4297499176 cites W2880870049 @default.
- W4297499176 cites W2884001105 @default.
- W4297499176 cites W2890133123 @default.
- W4297499176 cites W2891797827 @default.
- W4297499176 cites W2892156708 @default.
- W4297499176 cites W2914973752 @default.
- W4297499176 cites W2937816906 @default.
- W4297499176 cites W2943647772 @default.
- W4297499176 cites W2949960465 @default.
- W4297499176 cites W2962797490 @default.
- W4297499176 cites W2979896295 @default.
- W4297499176 cites W2983513901 @default.
- W4297499176 cites W2992559558 @default.
- W4297499176 cites W3092323705 @default.
- W4297499176 cites W3100898792 @default.
- W4297499176 cites W3102673610 @default.
- W4297499176 cites W3120191926 @default.
- W4297499176 cites W3123897798 @default.
- W4297499176 cites W3127977275 @default.
- W4297499176 cites W3128264666 @default.
- W4297499176 cites W3128539297 @default.
- W4297499176 cites W3134746604 @default.
- W4297499176 cites W3205248318 @default.
- W4297499176 cites W4213004511 @default.
- W4297499176 doi "https://doi.org/10.1016/j.rinp.2022.106024" @default.
- W4297499176 hasPublicationYear "2022" @default.
- W4297499176 type Work @default.
- W4297499176 citedByCount "4" @default.
- W4297499176 countsByYear W42974991762023 @default.
- W4297499176 crossrefType "journal-article" @default.
- W4297499176 hasAuthorship W4297499176A5014629413 @default.
- W4297499176 hasAuthorship W4297499176A5014742051 @default.
- W4297499176 hasAuthorship W4297499176A5026828904 @default.
- W4297499176 hasAuthorship W4297499176A5039331322 @default.
- W4297499176 hasAuthorship W4297499176A5045028595 @default.
- W4297499176 hasAuthorship W4297499176A5055509734 @default.
- W4297499176 hasAuthorship W4297499176A5068252474 @default.
- W4297499176 hasAuthorship W4297499176A5069416461 @default.
- W4297499176 hasAuthorship W4297499176A5076673661 @default.
- W4297499176 hasBestOaLocation W42974991761 @default.
- W4297499176 hasConcept C107816215 @default.
- W4297499176 hasConcept C108583219 @default.
- W4297499176 hasConcept C110367647 @default.
- W4297499176 hasConcept C120665830 @default.
- W4297499176 hasConcept C121332964 @default.
- W4297499176 hasConcept C154945302 @default.
- W4297499176 hasConcept C165699331 @default.
- W4297499176 hasConcept C187590223 @default.
- W4297499176 hasConcept C192562407 @default.
- W4297499176 hasConcept C41008148 @default.
- W4297499176 hasConcept C49040817 @default.
- W4297499176 hasConceptScore W4297499176C107816215 @default.
- W4297499176 hasConceptScore W4297499176C108583219 @default.
- W4297499176 hasConceptScore W4297499176C110367647 @default.
- W4297499176 hasConceptScore W4297499176C120665830 @default.
- W4297499176 hasConceptScore W4297499176C121332964 @default.
- W4297499176 hasConceptScore W4297499176C154945302 @default.
- W4297499176 hasConceptScore W4297499176C165699331 @default.
- W4297499176 hasConceptScore W4297499176C187590223 @default.
- W4297499176 hasConceptScore W4297499176C192562407 @default.
- W4297499176 hasConceptScore W4297499176C41008148 @default.
- W4297499176 hasConceptScore W4297499176C49040817 @default.
- W4297499176 hasLocation W42974991761 @default.
- W4297499176 hasOpenAccess W4297499176 @default.
- W4297499176 hasPrimaryLocation W42974991761 @default.
- W4297499176 hasRelatedWork W1992297177 @default.
- W4297499176 hasRelatedWork W2023933701 @default.
- W4297499176 hasRelatedWork W2035449872 @default.