Matches in SemOpenAlex for { <https://semopenalex.org/work/W4297503485> ?p ?o ?g. }
- W4297503485 endingPage "102752" @default.
- W4297503485 startingPage "102752" @default.
- W4297503485 abstract "This paper develops an automatic and reliable nondestructive evaluation (NDE) technique that enables quantification of the width and depth of subsurface defects of metallic components simultaneously by using non-contact laser ultrasonic technique and identified machine learning (ML) algorithm. Twenty-two specimens with various subsurface defect dimensions are designed and fabricated for laser ultrasonic experiments, and a total of 220 labeled laser ultrasonic signals are obtained for training and verifying ML models. Twelve features, including four time-domain features (maximum, minimum, peak-to-peak, and |Neg|/Pos value of the laser generated Rayleigh ultrasonic waves) and eight wavelet energy features, are identified and extracted as sensitive feature vectors for establishing the dataset. The principal component analysis (PCA) is implemented as dimensionality reduction method of feature vectors to optimize the recognition algorithm and improve the detection accuracy. Three widely used ML models in NDE, adaptive boosting (Adaboost), extreme gradient boosting (XGBboost), and support vector machine (SVM), combined with the PCA are proposed and compared for detecting both the width and depth of subsurface defects. The PCA-XGBoost achieves the highest recognition rate of 98.48%, and is therefore identified as the most effective approach for analyzing laser-ultrasonic signals. Unlike published reports, the proposed model is trained and evaluated with experimental data covered various classification labels, which is more adaptive and reliable in practical application than the models established using simulated data or limited experimental data. In other applications, as long as sufficient laser ultrasonic data with regards to various defect properties (dimensions, orientations, locations, shapes, etc.) can be acquired, the developed approach can realize accurate detection of corresponding defects." @default.
- W4297503485 created "2022-09-29" @default.
- W4297503485 creator A5035380365 @default.
- W4297503485 creator A5052037779 @default.
- W4297503485 creator A5061641043 @default.
- W4297503485 creator A5078465675 @default.
- W4297503485 creator A5083192990 @default.
- W4297503485 creator A5088665887 @default.
- W4297503485 creator A5090452349 @default.
- W4297503485 date "2023-01-01" @default.
- W4297503485 modified "2023-10-15" @default.
- W4297503485 title "Laser ultrasonics and machine learning for automatic defect detection in metallic components" @default.
- W4297503485 cites W1540007258 @default.
- W4297503485 cites W1889820893 @default.
- W4297503485 cites W1969475802 @default.
- W4297503485 cites W1971190036 @default.
- W4297503485 cites W1985842955 @default.
- W4297503485 cites W2033554338 @default.
- W4297503485 cites W2035149165 @default.
- W4297503485 cites W2055989956 @default.
- W4297503485 cites W2079444548 @default.
- W4297503485 cites W2143738372 @default.
- W4297503485 cites W2193840877 @default.
- W4297503485 cites W2261633870 @default.
- W4297503485 cites W2520658134 @default.
- W4297503485 cites W2547045565 @default.
- W4297503485 cites W2570768877 @default.
- W4297503485 cites W2608836358 @default.
- W4297503485 cites W2754260355 @default.
- W4297503485 cites W2802877483 @default.
- W4297503485 cites W2803868805 @default.
- W4297503485 cites W2807042118 @default.
- W4297503485 cites W2885366144 @default.
- W4297503485 cites W2895777068 @default.
- W4297503485 cites W2900452985 @default.
- W4297503485 cites W2900458319 @default.
- W4297503485 cites W2900612760 @default.
- W4297503485 cites W2907445858 @default.
- W4297503485 cites W2913615123 @default.
- W4297503485 cites W2951566323 @default.
- W4297503485 cites W2955640440 @default.
- W4297503485 cites W2959082036 @default.
- W4297503485 cites W2997048423 @default.
- W4297503485 cites W3000131825 @default.
- W4297503485 cites W3015225655 @default.
- W4297503485 cites W3020789896 @default.
- W4297503485 cites W3026672036 @default.
- W4297503485 cites W3036444151 @default.
- W4297503485 cites W3037288284 @default.
- W4297503485 cites W3046139018 @default.
- W4297503485 cites W3047364453 @default.
- W4297503485 cites W3081924963 @default.
- W4297503485 cites W3114591654 @default.
- W4297503485 cites W3126769568 @default.
- W4297503485 cites W3131604755 @default.
- W4297503485 cites W3168678097 @default.
- W4297503485 cites W3169192565 @default.
- W4297503485 cites W3214396588 @default.
- W4297503485 cites W4214739938 @default.
- W4297503485 cites W920720137 @default.
- W4297503485 doi "https://doi.org/10.1016/j.ndteint.2022.102752" @default.
- W4297503485 hasPublicationYear "2023" @default.
- W4297503485 type Work @default.
- W4297503485 citedByCount "8" @default.
- W4297503485 countsByYear W42975034852023 @default.
- W4297503485 crossrefType "journal-article" @default.
- W4297503485 hasAuthorship W4297503485A5035380365 @default.
- W4297503485 hasAuthorship W4297503485A5052037779 @default.
- W4297503485 hasAuthorship W4297503485A5061641043 @default.
- W4297503485 hasAuthorship W4297503485A5078465675 @default.
- W4297503485 hasAuthorship W4297503485A5083192990 @default.
- W4297503485 hasAuthorship W4297503485A5088665887 @default.
- W4297503485 hasAuthorship W4297503485A5090452349 @default.
- W4297503485 hasBestOaLocation W42975034851 @default.
- W4297503485 hasConcept C120665830 @default.
- W4297503485 hasConcept C121332964 @default.
- W4297503485 hasConcept C12267149 @default.
- W4297503485 hasConcept C138885662 @default.
- W4297503485 hasConcept C141404830 @default.
- W4297503485 hasConcept C153180895 @default.
- W4297503485 hasConcept C154945302 @default.
- W4297503485 hasConcept C192562407 @default.
- W4297503485 hasConcept C24890656 @default.
- W4297503485 hasConcept C27438332 @default.
- W4297503485 hasConcept C2776401178 @default.
- W4297503485 hasConcept C41008148 @default.
- W4297503485 hasConcept C41895202 @default.
- W4297503485 hasConcept C46686674 @default.
- W4297503485 hasConcept C520434653 @default.
- W4297503485 hasConcept C70518039 @default.
- W4297503485 hasConcept C81288441 @default.
- W4297503485 hasConceptScore W4297503485C120665830 @default.
- W4297503485 hasConceptScore W4297503485C121332964 @default.
- W4297503485 hasConceptScore W4297503485C12267149 @default.
- W4297503485 hasConceptScore W4297503485C138885662 @default.
- W4297503485 hasConceptScore W4297503485C141404830 @default.
- W4297503485 hasConceptScore W4297503485C153180895 @default.
- W4297503485 hasConceptScore W4297503485C154945302 @default.