Matches in SemOpenAlex for { <https://semopenalex.org/work/W4297516864> ?p ?o ?g. }
- W4297516864 endingPage "015104" @default.
- W4297516864 startingPage "015104" @default.
- W4297516864 abstract "Abstract The accurate identification of gas–solid two-phase flow patterns is an important but challenging subject for pneumatic conveying. In this study, the sensitivity deficiencies of a single electrode were analysed via finite element analysis and a more sensitive cross-rod electrostatic sensor array structure was designed to measure the flow pattern signals. The experiment used Geldart D particles to verify the feasibility of the designed sensor array. Three types of feature vectors were extracted: the mean value, variance, and energy ratio. To identify the flow pattern accurately, the sine–cosine algorithm (SCA) is exploited to optimise the smoothing factor critical for a probabilistic neural network (PNN), namely SCA-PNN. The identification results show that the identification accuracy of the proposed algorithm outperforms the traditional PNN, the back propagation neural network (BPNN) and the support vector machine (SVM)." @default.
- W4297516864 created "2022-09-29" @default.
- W4297516864 creator A5026418177 @default.
- W4297516864 creator A5051407260 @default.
- W4297516864 creator A5060568598 @default.
- W4297516864 date "2022-10-19" @default.
- W4297516864 modified "2023-10-17" @default.
- W4297516864 title "A gas–solid flow pattern identification algorithm based on cross-rod electrostatic sensor array" @default.
- W4297516864 cites W1967036326 @default.
- W4297516864 cites W1971281444 @default.
- W4297516864 cites W2001473201 @default.
- W4297516864 cites W2015423720 @default.
- W4297516864 cites W2027911445 @default.
- W4297516864 cites W2041768107 @default.
- W4297516864 cites W2060416298 @default.
- W4297516864 cites W2070728247 @default.
- W4297516864 cites W2079762035 @default.
- W4297516864 cites W2091376861 @default.
- W4297516864 cites W2118020555 @default.
- W4297516864 cites W2121452488 @default.
- W4297516864 cites W2232317135 @default.
- W4297516864 cites W2466452884 @default.
- W4297516864 cites W2569573967 @default.
- W4297516864 cites W2896167144 @default.
- W4297516864 cites W2905387821 @default.
- W4297516864 cites W2916391480 @default.
- W4297516864 cites W2947137917 @default.
- W4297516864 cites W2980889308 @default.
- W4297516864 cites W3021332625 @default.
- W4297516864 cites W3030803239 @default.
- W4297516864 cites W3038016465 @default.
- W4297516864 cites W3089318091 @default.
- W4297516864 cites W3111799870 @default.
- W4297516864 cites W3116159829 @default.
- W4297516864 cites W3155703044 @default.
- W4297516864 cites W4293509336 @default.
- W4297516864 doi "https://doi.org/10.1088/1361-6501/ac95b3" @default.
- W4297516864 hasPublicationYear "2022" @default.
- W4297516864 type Work @default.
- W4297516864 citedByCount "1" @default.
- W4297516864 countsByYear W42975168642023 @default.
- W4297516864 crossrefType "journal-article" @default.
- W4297516864 hasAuthorship W4297516864A5026418177 @default.
- W4297516864 hasAuthorship W4297516864A5051407260 @default.
- W4297516864 hasAuthorship W4297516864A5060568598 @default.
- W4297516864 hasConcept C105795698 @default.
- W4297516864 hasConcept C11413529 @default.
- W4297516864 hasConcept C116834253 @default.
- W4297516864 hasConcept C12267149 @default.
- W4297516864 hasConcept C127413603 @default.
- W4297516864 hasConcept C134342201 @default.
- W4297516864 hasConcept C153180895 @default.
- W4297516864 hasConcept C154945302 @default.
- W4297516864 hasConcept C175202392 @default.
- W4297516864 hasConcept C186370098 @default.
- W4297516864 hasConcept C21200559 @default.
- W4297516864 hasConcept C24326235 @default.
- W4297516864 hasConcept C2524010 @default.
- W4297516864 hasConcept C31972630 @default.
- W4297516864 hasConcept C33923547 @default.
- W4297516864 hasConcept C3770464 @default.
- W4297516864 hasConcept C38349280 @default.
- W4297516864 hasConcept C41008148 @default.
- W4297516864 hasConcept C50644808 @default.
- W4297516864 hasConcept C59822182 @default.
- W4297516864 hasConcept C86803240 @default.
- W4297516864 hasConceptScore W4297516864C105795698 @default.
- W4297516864 hasConceptScore W4297516864C11413529 @default.
- W4297516864 hasConceptScore W4297516864C116834253 @default.
- W4297516864 hasConceptScore W4297516864C12267149 @default.
- W4297516864 hasConceptScore W4297516864C127413603 @default.
- W4297516864 hasConceptScore W4297516864C134342201 @default.
- W4297516864 hasConceptScore W4297516864C153180895 @default.
- W4297516864 hasConceptScore W4297516864C154945302 @default.
- W4297516864 hasConceptScore W4297516864C175202392 @default.
- W4297516864 hasConceptScore W4297516864C186370098 @default.
- W4297516864 hasConceptScore W4297516864C21200559 @default.
- W4297516864 hasConceptScore W4297516864C24326235 @default.
- W4297516864 hasConceptScore W4297516864C2524010 @default.
- W4297516864 hasConceptScore W4297516864C31972630 @default.
- W4297516864 hasConceptScore W4297516864C33923547 @default.
- W4297516864 hasConceptScore W4297516864C3770464 @default.
- W4297516864 hasConceptScore W4297516864C38349280 @default.
- W4297516864 hasConceptScore W4297516864C41008148 @default.
- W4297516864 hasConceptScore W4297516864C50644808 @default.
- W4297516864 hasConceptScore W4297516864C59822182 @default.
- W4297516864 hasConceptScore W4297516864C86803240 @default.
- W4297516864 hasFunder F4320321001 @default.
- W4297516864 hasIssue "1" @default.
- W4297516864 hasLocation W42975168641 @default.
- W4297516864 hasOpenAccess W4297516864 @default.
- W4297516864 hasPrimaryLocation W42975168641 @default.
- W4297516864 hasRelatedWork W1979289657 @default.
- W4297516864 hasRelatedWork W2041399278 @default.
- W4297516864 hasRelatedWork W2099369243 @default.
- W4297516864 hasRelatedWork W2136184105 @default.
- W4297516864 hasRelatedWork W2153189372 @default.
- W4297516864 hasRelatedWork W2163073107 @default.