Matches in SemOpenAlex for { <https://semopenalex.org/work/W4297537860> ?p ?o ?g. }
- W4297537860 endingPage "107674" @default.
- W4297537860 startingPage "107674" @default.
- W4297537860 abstract "The phenomenology of lava flow emplacement involves complex physical processes related to crystallization, eruption rate, temperature, crust solidification, and a variety of other factors. Changes in effusion rate are a natural part of lava flow emplacement and can complicate lava flow morphology and propagation. Analog experiments are a useful tool for investigating the role of changing effusion rates on flow propagation because they allow reasonably precise control of conditions and detailed documentation of resulting flows. Experimental datasets that investigate the impact of variable effusion rates on flow propagation can be used to enhance fundamental understanding of flow processes and to inform numerical models for hazards forecasts. In this study, we address the effects of decreasing and increasing eruption rates (Q) on four emplacement modes common to lava flows: resurfacing, marginal breakouts, inflation, and lava tubes. Laboratory analogue experiments using polyethylene glycol (PEG) 600 wax were used to derive Ψ, a dimensionless parameter that relates crust formation (ts) and lateral advection (ta) timescales of a viscous gravity current. We conducted 120 experiments using a peristaltic pump to inject dyed PEG wax into a chilled bath (∼ 0 °C) in a tank with a roughened base at a slope of 0°. The experiments were divided into two conditions: decreasing Q with time (condition 1) and increasing Q with time (condition 2). We controlled for volume of extruded wax, temperature, instantaneous eruption rate, Ψ, and duration of the decrease or increase in eruption rate. Results indicate that the duration of the pulsatory eruption rate, the experimental condition, initial Ψ, and the extruded volume influence the presence and strength of a crust (or lack thereof) which in turn influences the onset and extent of the four emplacement modes investigated. Prolonged increase in eruption rates favored resurfacing, widespread marginal breakouts and flow advancement, inflation, and some tube formation, while the specific morphology and area covered was controlled by an extensive, coherent crust, which in turn depended on initial Ψ and duration of the initial eruptive stage. Prolonged decreasing eruption rates promoted localized marginal breakouts, inflation, and tube formation. The duration of the pulse during the eruption rate change affected the likelihood and/or significance of the mode of emplacement. Similar observations were made on the early stages of the 2021 Fagradalsfjall eruption in Iceland to demonstrate the utility of the wax experiments in interpreting natural systems. Predicting where lava will flow remains challenging due to the complex variables affecting its propagation. Lava is a multiphase fluid made of solids, liquids, and gas. In addition, as it cools, it forms a crust that can affect the flow. The eruption of lava is rarely steady over short and long timescales. This variability in eruption rate can also affect lava flow propagation and hence affect its predictability. Such variability in eruption rate may cause the flow to grow in thickness, in length, in width, or all of these simultaneously, and the style of growth affects the area impacted and controls where the flow is most hazardous. While numerical models have been useful in simulating flow advance on slopes, these models often simplify lava flow geometry and propagation mechanics. Laboratory analogue experiments allow for the reproduction of complex physics and morphology that closer approximate processes observed in nature. In this study, 120 experiments using PEG 600 – a water-soluble wax – were used to simulate lava flow emplacement under unsteady vent conditions. Flows were emplaced while increasing or decreasing the eruption rate during an eruption and the duration of the increase or decrease in eruption rate was varied along with other flow conditions. In the experiments, increasing or decreasing eruption rate at the vent, along with other parameters, impacted the formation of a cohesive or brittle crust, which in turn exerted strong control on whether the flows thickened or lengthened, affecting the area impacted and flow morphology. We map out lava flow characteristics in terms of these vent conditions, and compare our findings to a real eruption in Iceland." @default.
- W4297537860 created "2022-09-29" @default.
- W4297537860 creator A5025017246 @default.
- W4297537860 creator A5046655648 @default.
- W4297537860 creator A5078217735 @default.
- W4297537860 date "2022-12-01" @default.
- W4297537860 modified "2023-10-18" @default.
- W4297537860 title "The effects of unsteady effusion rates on lava flow emplacement: Insights from laboratory analogue experiments" @default.
- W4297537860 cites W1584981793 @default.
- W4297537860 cites W1953810533 @default.
- W4297537860 cites W1969376448 @default.
- W4297537860 cites W1979700742 @default.
- W4297537860 cites W1982460483 @default.
- W4297537860 cites W1982721546 @default.
- W4297537860 cites W1982878678 @default.
- W4297537860 cites W1983943693 @default.
- W4297537860 cites W1985132853 @default.
- W4297537860 cites W1990748177 @default.
- W4297537860 cites W1991218745 @default.
- W4297537860 cites W1995602813 @default.
- W4297537860 cites W2000238457 @default.
- W4297537860 cites W2004749421 @default.
- W4297537860 cites W2015773982 @default.
- W4297537860 cites W2016418052 @default.
- W4297537860 cites W2022527712 @default.
- W4297537860 cites W2026757636 @default.
- W4297537860 cites W2028653843 @default.
- W4297537860 cites W2032779051 @default.
- W4297537860 cites W2041980112 @default.
- W4297537860 cites W2044083331 @default.
- W4297537860 cites W2044900048 @default.
- W4297537860 cites W2047262100 @default.
- W4297537860 cites W2047930284 @default.
- W4297537860 cites W2050618220 @default.
- W4297537860 cites W2056854714 @default.
- W4297537860 cites W2061701314 @default.
- W4297537860 cites W2062960339 @default.
- W4297537860 cites W2069262884 @default.
- W4297537860 cites W2073812864 @default.
- W4297537860 cites W2079619279 @default.
- W4297537860 cites W2084194905 @default.
- W4297537860 cites W2085560448 @default.
- W4297537860 cites W2089708153 @default.
- W4297537860 cites W2093048020 @default.
- W4297537860 cites W2111038584 @default.
- W4297537860 cites W2124805867 @default.
- W4297537860 cites W2125942096 @default.
- W4297537860 cites W2128689039 @default.
- W4297537860 cites W2129773478 @default.
- W4297537860 cites W2138555248 @default.
- W4297537860 cites W2147528098 @default.
- W4297537860 cites W2153976186 @default.
- W4297537860 cites W2423931429 @default.
- W4297537860 cites W2618453482 @default.
- W4297537860 cites W2625459513 @default.
- W4297537860 cites W2752801835 @default.
- W4297537860 cites W2768468192 @default.
- W4297537860 cites W2790225084 @default.
- W4297537860 cites W2992544557 @default.
- W4297537860 cites W3166171859 @default.
- W4297537860 cites W3201726419 @default.
- W4297537860 doi "https://doi.org/10.1016/j.jvolgeores.2022.107674" @default.
- W4297537860 hasPublicationYear "2022" @default.
- W4297537860 type Work @default.
- W4297537860 citedByCount "1" @default.
- W4297537860 countsByYear W42975378602023 @default.
- W4297537860 crossrefType "journal-article" @default.
- W4297537860 hasAuthorship W4297537860A5025017246 @default.
- W4297537860 hasAuthorship W4297537860A5046655648 @default.
- W4297537860 hasAuthorship W4297537860A5078217735 @default.
- W4297537860 hasConcept C111368507 @default.
- W4297537860 hasConcept C113754120 @default.
- W4297537860 hasConcept C120806208 @default.
- W4297537860 hasConcept C121332964 @default.
- W4297537860 hasConcept C127313418 @default.
- W4297537860 hasConcept C155507917 @default.
- W4297537860 hasConcept C172120300 @default.
- W4297537860 hasConcept C17409809 @default.
- W4297537860 hasConcept C24343810 @default.
- W4297537860 hasConcept C2776132308 @default.
- W4297537860 hasConcept C2776698055 @default.
- W4297537860 hasConcept C57879066 @default.
- W4297537860 hasConcept C5900021 @default.
- W4297537860 hasConcept C8058405 @default.
- W4297537860 hasConceptScore W4297537860C111368507 @default.
- W4297537860 hasConceptScore W4297537860C113754120 @default.
- W4297537860 hasConceptScore W4297537860C120806208 @default.
- W4297537860 hasConceptScore W4297537860C121332964 @default.
- W4297537860 hasConceptScore W4297537860C127313418 @default.
- W4297537860 hasConceptScore W4297537860C155507917 @default.
- W4297537860 hasConceptScore W4297537860C172120300 @default.
- W4297537860 hasConceptScore W4297537860C17409809 @default.
- W4297537860 hasConceptScore W4297537860C24343810 @default.
- W4297537860 hasConceptScore W4297537860C2776132308 @default.
- W4297537860 hasConceptScore W4297537860C2776698055 @default.
- W4297537860 hasConceptScore W4297537860C57879066 @default.
- W4297537860 hasConceptScore W4297537860C5900021 @default.
- W4297537860 hasConceptScore W4297537860C8058405 @default.