Matches in SemOpenAlex for { <https://semopenalex.org/work/W4297619556> ?p ?o ?g. }
- W4297619556 endingPage "25647" @default.
- W4297619556 startingPage "25632" @default.
- W4297619556 abstract "The state-of-the art for solving the nonlinear material decomposition problem in spectral computed tomography is based on variational methods, but these are computationally slow and critically depend on the particular choice of the regularization functional. Convolutional neural networks have been proposed for addressing these issues. However, learning algorithms require large amounts of experimental data sets. We propose a deep learning strategy for solving the material decomposition problem based on a U-Net architecture and a Sim2Real transfer learning approach where the knowledge that we learn from synthetic data is transferred to a real-world scenario. In order for this approach to work, synthetic data must be realistic and representative of the experimental data. For this purpose, numerical phantoms are generated from human CT volumes of the KiTS19 Challenge dataset, segmented into specific materials (soft tissue and bone). These volumes are projected into sinogram space in order to simulate photon counting data, taking into account the energy response of the scanner. We compared projection- and image-based decomposition approaches where the network is trained to decompose the materials either in the projection or in the image domain. The proposed Sim2Real transfer strategies are compared to a regularized Gauss-Newton (RGN) method on synthetic data, experimental phantom data and human thorax data." @default.
- W4297619556 created "2022-09-30" @default.
- W4297619556 creator A5024045165 @default.
- W4297619556 creator A5033758811 @default.
- W4297619556 creator A5038386064 @default.
- W4297619556 creator A5040785458 @default.
- W4297619556 creator A5064227040 @default.
- W4297619556 creator A5066036634 @default.
- W4297619556 creator A5075496055 @default.
- W4297619556 creator A5082445591 @default.
- W4297619556 creator A5083534735 @default.
- W4297619556 creator A5090301407 @default.
- W4297619556 creator A5091631955 @default.
- W4297619556 date "2021-01-01" @default.
- W4297619556 modified "2023-10-14" @default.
- W4297619556 title "Material Decomposition in Spectral CT Using Deep Learning: A Sim2Real Transfer Approach" @default.
- W4297619556 cites W1920702274 @default.
- W4297619556 cites W1967146494 @default.
- W4297619556 cites W1968238516 @default.
- W4297619556 cites W1972037630 @default.
- W4297619556 cites W1972952465 @default.
- W4297619556 cites W1981418870 @default.
- W4297619556 cites W1982059935 @default.
- W4297619556 cites W2005987054 @default.
- W4297619556 cites W2011632667 @default.
- W4297619556 cites W2013586450 @default.
- W4297619556 cites W2017441482 @default.
- W4297619556 cites W2020061308 @default.
- W4297619556 cites W2068780335 @default.
- W4297619556 cites W2072647673 @default.
- W4297619556 cites W2077847110 @default.
- W4297619556 cites W2080843093 @default.
- W4297619556 cites W2099728952 @default.
- W4297619556 cites W2105050495 @default.
- W4297619556 cites W2108598243 @default.
- W4297619556 cites W2110652437 @default.
- W4297619556 cites W2143684211 @default.
- W4297619556 cites W2163922914 @default.
- W4297619556 cites W2253429366 @default.
- W4297619556 cites W2346062110 @default.
- W4297619556 cites W2398671084 @default.
- W4297619556 cites W2502445035 @default.
- W4297619556 cites W2559553341 @default.
- W4297619556 cites W2562521985 @default.
- W4297619556 cites W2574952845 @default.
- W4297619556 cites W2606148412 @default.
- W4297619556 cites W2751563926 @default.
- W4297619556 cites W2752674389 @default.
- W4297619556 cites W2778924750 @default.
- W4297619556 cites W2782977076 @default.
- W4297619556 cites W2796500552 @default.
- W4297619556 cites W2803182390 @default.
- W4297619556 cites W2888322716 @default.
- W4297619556 cites W2908579316 @default.
- W4297619556 cites W2919115771 @default.
- W4297619556 cites W2947218733 @default.
- W4297619556 cites W2952020389 @default.
- W4297619556 cites W2996406547 @default.
- W4297619556 cites W3003810332 @default.
- W4297619556 cites W3032125536 @default.
- W4297619556 cites W3038014657 @default.
- W4297619556 cites W3039418836 @default.
- W4297619556 cites W3039883906 @default.
- W4297619556 cites W3101510409 @default.
- W4297619556 cites W3103586216 @default.
- W4297619556 cites W3103921058 @default.
- W4297619556 cites W3104324122 @default.
- W4297619556 doi "https://doi.org/10.1109/access.2021.3056150" @default.
- W4297619556 hasPublicationYear "2021" @default.
- W4297619556 type Work @default.
- W4297619556 citedByCount "14" @default.
- W4297619556 countsByYear W42976195562021 @default.
- W4297619556 countsByYear W42976195562022 @default.
- W4297619556 countsByYear W42976195562023 @default.
- W4297619556 crossrefType "journal-article" @default.
- W4297619556 hasAuthorship W4297619556A5024045165 @default.
- W4297619556 hasAuthorship W4297619556A5033758811 @default.
- W4297619556 hasAuthorship W4297619556A5038386064 @default.
- W4297619556 hasAuthorship W4297619556A5040785458 @default.
- W4297619556 hasAuthorship W4297619556A5064227040 @default.
- W4297619556 hasAuthorship W4297619556A5066036634 @default.
- W4297619556 hasAuthorship W4297619556A5075496055 @default.
- W4297619556 hasAuthorship W4297619556A5082445591 @default.
- W4297619556 hasAuthorship W4297619556A5083534735 @default.
- W4297619556 hasAuthorship W4297619556A5090301407 @default.
- W4297619556 hasAuthorship W4297619556A5091631955 @default.
- W4297619556 hasBestOaLocation W42976195561 @default.
- W4297619556 hasConcept C104293457 @default.
- W4297619556 hasConcept C108583219 @default.
- W4297619556 hasConcept C11413529 @default.
- W4297619556 hasConcept C120665830 @default.
- W4297619556 hasConcept C121332964 @default.
- W4297619556 hasConcept C141379421 @default.
- W4297619556 hasConcept C150899416 @default.
- W4297619556 hasConcept C153180895 @default.
- W4297619556 hasConcept C154945302 @default.
- W4297619556 hasConcept C160920958 @default.
- W4297619556 hasConcept C2776135515 @default.