Matches in SemOpenAlex for { <https://semopenalex.org/work/W4297626484> ?p ?o ?g. }
Showing items 1 to 58 of
58
with 100 items per page.
- W4297626484 abstract "With the advantage of large volume capacity, heavy goods vehicles have become an important part of road freight transport. However, the proportion of heavy goods vehicles involved in traffic accidents is very high, especially in traffic accidents with serious casualties. These traffic accidents have brought great harm to lives and property, so it is necessary to study the factors influencing the traffic accident severity of heavy goods vehicles and corresponding countermeasures. Based on traffic accident data of heavy goods vehicles in Shenzhen, the statistical analysis of heavy goods vehicle traffic accidents had been examined from the aspects of driver, vehicle, road, and environment. The characteristics of heavy goods vehicle traffic accidents have also been identified, and the influence factors of heavy goods vehicle traffic accident severity have been singled out. With the number of fatal accidents in traffic accident data as a reference, the main factors strongly related to the heavy goods vehicle traffic accident severity were determined through Grey correlation analysis. We then built the data set and the test set based on the selected main factors. We established a Bayesian network model to analyze the relationship between the heavy goods vehicle traffic accident severity and influence factors. The structure of Bayesian network was constructed. The parameter estimation of Bayesian network was conducted by EM algorithm, and the validity of the model has been verified. Then the reasoning analysis was carried out by applying this model. Based on the results of Bayesian network reasoning analysis, both the hidden dangers of heavy goods vehicle traffic accident and problems in the supervision and management of heavy goods vehicles were analyzed, and we proposed countermeasures of strengthening supervision and management and improving road hardware conditions to improve the traffic safety level of heavy goods vehicles." @default.
- W4297626484 created "2022-09-30" @default.
- W4297626484 creator A5002321576 @default.
- W4297626484 creator A5025865669 @default.
- W4297626484 date "2022-09-08" @default.
- W4297626484 modified "2023-10-16" @default.
- W4297626484 title "Study on the Influence Factors on the Severity of Heavy Goods Vehicle Traffic Accidents" @default.
- W4297626484 doi "https://doi.org/10.1061/9780784484265.187" @default.
- W4297626484 hasPublicationYear "2022" @default.
- W4297626484 type Work @default.
- W4297626484 citedByCount "0" @default.
- W4297626484 crossrefType "proceedings-article" @default.
- W4297626484 hasAuthorship W4297626484A5002321576 @default.
- W4297626484 hasAuthorship W4297626484A5025865669 @default.
- W4297626484 hasConcept C107673813 @default.
- W4297626484 hasConcept C111472728 @default.
- W4297626484 hasConcept C127413603 @default.
- W4297626484 hasConcept C138885662 @default.
- W4297626484 hasConcept C154945302 @default.
- W4297626484 hasConcept C17744445 @default.
- W4297626484 hasConcept C199539241 @default.
- W4297626484 hasConcept C22212356 @default.
- W4297626484 hasConcept C2776371148 @default.
- W4297626484 hasConcept C2777363581 @default.
- W4297626484 hasConcept C2780289543 @default.
- W4297626484 hasConcept C2989506057 @default.
- W4297626484 hasConcept C33724603 @default.
- W4297626484 hasConcept C41008148 @default.
- W4297626484 hasConceptScore W4297626484C107673813 @default.
- W4297626484 hasConceptScore W4297626484C111472728 @default.
- W4297626484 hasConceptScore W4297626484C127413603 @default.
- W4297626484 hasConceptScore W4297626484C138885662 @default.
- W4297626484 hasConceptScore W4297626484C154945302 @default.
- W4297626484 hasConceptScore W4297626484C17744445 @default.
- W4297626484 hasConceptScore W4297626484C199539241 @default.
- W4297626484 hasConceptScore W4297626484C22212356 @default.
- W4297626484 hasConceptScore W4297626484C2776371148 @default.
- W4297626484 hasConceptScore W4297626484C2777363581 @default.
- W4297626484 hasConceptScore W4297626484C2780289543 @default.
- W4297626484 hasConceptScore W4297626484C2989506057 @default.
- W4297626484 hasConceptScore W4297626484C33724603 @default.
- W4297626484 hasConceptScore W4297626484C41008148 @default.
- W4297626484 hasLocation W42976264841 @default.
- W4297626484 hasOpenAccess W4297626484 @default.
- W4297626484 hasPrimaryLocation W42976264841 @default.
- W4297626484 hasRelatedWork W1608365237 @default.
- W4297626484 hasRelatedWork W2043517185 @default.
- W4297626484 hasRelatedWork W2350381210 @default.
- W4297626484 hasRelatedWork W2355731920 @default.
- W4297626484 hasRelatedWork W2356780903 @default.
- W4297626484 hasRelatedWork W2363820881 @default.
- W4297626484 hasRelatedWork W2377338010 @default.
- W4297626484 hasRelatedWork W2950301280 @default.
- W4297626484 hasRelatedWork W657358746 @default.
- W4297626484 hasRelatedWork W845503588 @default.
- W4297626484 isParatext "false" @default.
- W4297626484 isRetracted "false" @default.
- W4297626484 workType "article" @default.