Matches in SemOpenAlex for { <https://semopenalex.org/work/W4297647902> ?p ?o ?g. }
Showing items 1 to 67 of
67
with 100 items per page.
- W4297647902 abstract "Images in aerial datasets are very large in resolution, and each frame contains many dense and small objects. State-of-the-art detection methods fail to capture small objects, local features, and region proposals for densely overlapped objects in aerial imagery due to the high variation of object sizes in satellite imagery with respect to the image size and high variation of content. Aerial imagery content varies greatly within the dataset due to the large change in lighting conditions, and the type of ground imagery captures from high altitudes. The variation is even higher between different datasets as object sizes, class distributions, image acquisition, and weather conditions can vary even more drastically. Thus, Domain Adaptation (DA) has been introduced as a band-aid to alleviate the degradation of object identification in previously unseen datasets. In this paper, we propose a small object detection pipeline that improves the feature extraction process by spatial pyramid pooling, cross-stage partial networks, heat-map-based region proposal network, and objects localization and identification through a novel image difficulty score that adapts the overall focal loss measure based on the image difficulty. Next, we propose novel contrastive learning with progressive domain adaptation to produce domain-invariant features across aerial datasets using local and global features. Effective analysis and illustration of different performance metrics and challenges show that our proposed method is comparable to the current State-of-Art models and creates a first-ever Domain Adaptation benchmark for the object detection task in highly imbalanced satellite datasets with large domain gaps and dominant small objects." @default.
- W4297647902 created "2022-09-30" @default.
- W4297647902 creator A5046019468 @default.
- W4297647902 creator A5068828260 @default.
- W4297647902 date "2022-09-06" @default.
- W4297647902 modified "2023-09-30" @default.
- W4297647902 title "Progressive Domain Adaptation with Contrastive Learning for Object Detection in the Satellite Imagery" @default.
- W4297647902 doi "https://doi.org/10.48550/arxiv.2209.02564" @default.
- W4297647902 hasPublicationYear "2022" @default.
- W4297647902 type Work @default.
- W4297647902 citedByCount "0" @default.
- W4297647902 crossrefType "posted-content" @default.
- W4297647902 hasAuthorship W4297647902A5046019468 @default.
- W4297647902 hasAuthorship W4297647902A5068828260 @default.
- W4297647902 hasBestOaLocation W42976479021 @default.
- W4297647902 hasConcept C138885662 @default.
- W4297647902 hasConcept C142575187 @default.
- W4297647902 hasConcept C153180895 @default.
- W4297647902 hasConcept C154945302 @default.
- W4297647902 hasConcept C185798385 @default.
- W4297647902 hasConcept C199360897 @default.
- W4297647902 hasConcept C205649164 @default.
- W4297647902 hasConcept C2524010 @default.
- W4297647902 hasConcept C2776151529 @default.
- W4297647902 hasConcept C2776401178 @default.
- W4297647902 hasConcept C31972630 @default.
- W4297647902 hasConcept C33923547 @default.
- W4297647902 hasConcept C41008148 @default.
- W4297647902 hasConcept C41895202 @default.
- W4297647902 hasConcept C43521106 @default.
- W4297647902 hasConcept C52622490 @default.
- W4297647902 hasConcept C58640448 @default.
- W4297647902 hasConcept C70437156 @default.
- W4297647902 hasConceptScore W4297647902C138885662 @default.
- W4297647902 hasConceptScore W4297647902C142575187 @default.
- W4297647902 hasConceptScore W4297647902C153180895 @default.
- W4297647902 hasConceptScore W4297647902C154945302 @default.
- W4297647902 hasConceptScore W4297647902C185798385 @default.
- W4297647902 hasConceptScore W4297647902C199360897 @default.
- W4297647902 hasConceptScore W4297647902C205649164 @default.
- W4297647902 hasConceptScore W4297647902C2524010 @default.
- W4297647902 hasConceptScore W4297647902C2776151529 @default.
- W4297647902 hasConceptScore W4297647902C2776401178 @default.
- W4297647902 hasConceptScore W4297647902C31972630 @default.
- W4297647902 hasConceptScore W4297647902C33923547 @default.
- W4297647902 hasConceptScore W4297647902C41008148 @default.
- W4297647902 hasConceptScore W4297647902C41895202 @default.
- W4297647902 hasConceptScore W4297647902C43521106 @default.
- W4297647902 hasConceptScore W4297647902C52622490 @default.
- W4297647902 hasConceptScore W4297647902C58640448 @default.
- W4297647902 hasConceptScore W4297647902C70437156 @default.
- W4297647902 hasLocation W42976479021 @default.
- W4297647902 hasOpenAccess W4297647902 @default.
- W4297647902 hasPrimaryLocation W42976479021 @default.
- W4297647902 hasRelatedWork W137416770 @default.
- W4297647902 hasRelatedWork W2090093270 @default.
- W4297647902 hasRelatedWork W2105996168 @default.
- W4297647902 hasRelatedWork W2904509960 @default.
- W4297647902 hasRelatedWork W2951391129 @default.
- W4297647902 hasRelatedWork W2969680539 @default.
- W4297647902 hasRelatedWork W3104335588 @default.
- W4297647902 hasRelatedWork W3171329138 @default.
- W4297647902 hasRelatedWork W4255402425 @default.
- W4297647902 hasRelatedWork W3127217315 @default.
- W4297647902 isParatext "false" @default.
- W4297647902 isRetracted "false" @default.
- W4297647902 workType "article" @default.