Matches in SemOpenAlex for { <https://semopenalex.org/work/W4297662259> ?p ?o ?g. }
Showing items 1 to 67 of
67
with 100 items per page.
- W4297662259 abstract "Linear layouts are a graph visualization method that can be used to capture an entry pattern in an adjacency matrix of a given graph. By reordering the node indices of the original adjacency matrix, linear layouts provide knowledge of latent graph structures. Conventional linear layout methods commonly aim to find an optimal reordering solution based on predefined features of a given matrix and loss function. However, prior knowledge of the appropriate features to use or structural patterns in a given adjacency matrix is not always available. In such a case, performing the reordering based on data-driven feature extraction without assuming a specific structure in an adjacency matrix is preferable. Recently, a neural-network-based matrix reordering method called DeepTMR has been proposed to perform this function. However, it is limited to a two-mode reordering (i.e., the rows and columns are reordered separately) and it cannot be applied in the one-mode setting (i.e., the same node order is used for reordering both rows and columns), owing to the characteristics of its model architecture. In this study, we extend DeepTMR and propose a new one-mode linear layout method referred to as AutoLL. We developed two types of neural network models, AutoLL-D and AutoLL-U, for reordering directed and undirected networks, respectively. To perform one-mode reordering, these AutoLL models have specific encoder architectures, which extract node features from an observed adjacency matrix. We conducted both qualitative and quantitative evaluations of the proposed approach, and the experimental results demonstrate its effectiveness." @default.
- W4297662259 created "2022-09-30" @default.
- W4297662259 creator A5006890326 @default.
- W4297662259 creator A5078812767 @default.
- W4297662259 date "2021-08-05" @default.
- W4297662259 modified "2023-09-26" @default.
- W4297662259 title "AutoLL: Automatic Linear Layout of Graphs based on Deep Neural Network" @default.
- W4297662259 doi "https://doi.org/10.48550/arxiv.2108.02431" @default.
- W4297662259 hasPublicationYear "2021" @default.
- W4297662259 type Work @default.
- W4297662259 citedByCount "0" @default.
- W4297662259 crossrefType "posted-content" @default.
- W4297662259 hasAuthorship W4297662259A5006890326 @default.
- W4297662259 hasAuthorship W4297662259A5078812767 @default.
- W4297662259 hasBestOaLocation W42976622591 @default.
- W4297662259 hasConcept C104140500 @default.
- W4297662259 hasConcept C106487976 @default.
- W4297662259 hasConcept C110484373 @default.
- W4297662259 hasConcept C11413529 @default.
- W4297662259 hasConcept C127413603 @default.
- W4297662259 hasConcept C132525143 @default.
- W4297662259 hasConcept C135598885 @default.
- W4297662259 hasConcept C153180895 @default.
- W4297662259 hasConcept C154945302 @default.
- W4297662259 hasConcept C159985019 @default.
- W4297662259 hasConcept C180356752 @default.
- W4297662259 hasConcept C192562407 @default.
- W4297662259 hasConcept C41008148 @default.
- W4297662259 hasConcept C50644808 @default.
- W4297662259 hasConcept C62611344 @default.
- W4297662259 hasConcept C66938386 @default.
- W4297662259 hasConcept C77088390 @default.
- W4297662259 hasConcept C80444323 @default.
- W4297662259 hasConceptScore W4297662259C104140500 @default.
- W4297662259 hasConceptScore W4297662259C106487976 @default.
- W4297662259 hasConceptScore W4297662259C110484373 @default.
- W4297662259 hasConceptScore W4297662259C11413529 @default.
- W4297662259 hasConceptScore W4297662259C127413603 @default.
- W4297662259 hasConceptScore W4297662259C132525143 @default.
- W4297662259 hasConceptScore W4297662259C135598885 @default.
- W4297662259 hasConceptScore W4297662259C153180895 @default.
- W4297662259 hasConceptScore W4297662259C154945302 @default.
- W4297662259 hasConceptScore W4297662259C159985019 @default.
- W4297662259 hasConceptScore W4297662259C180356752 @default.
- W4297662259 hasConceptScore W4297662259C192562407 @default.
- W4297662259 hasConceptScore W4297662259C41008148 @default.
- W4297662259 hasConceptScore W4297662259C50644808 @default.
- W4297662259 hasConceptScore W4297662259C62611344 @default.
- W4297662259 hasConceptScore W4297662259C66938386 @default.
- W4297662259 hasConceptScore W4297662259C77088390 @default.
- W4297662259 hasConceptScore W4297662259C80444323 @default.
- W4297662259 hasLocation W42976622591 @default.
- W4297662259 hasOpenAccess W4297662259 @default.
- W4297662259 hasPrimaryLocation W42976622591 @default.
- W4297662259 hasRelatedWork W1997448565 @default.
- W4297662259 hasRelatedWork W2085001618 @default.
- W4297662259 hasRelatedWork W2160456903 @default.
- W4297662259 hasRelatedWork W2246870267 @default.
- W4297662259 hasRelatedWork W3026005308 @default.
- W4297662259 hasRelatedWork W3081084973 @default.
- W4297662259 hasRelatedWork W3122647736 @default.
- W4297662259 hasRelatedWork W3189262475 @default.
- W4297662259 hasRelatedWork W3217007274 @default.
- W4297662259 hasRelatedWork W4286413847 @default.
- W4297662259 isParatext "false" @default.
- W4297662259 isRetracted "false" @default.
- W4297662259 workType "article" @default.