Matches in SemOpenAlex for { <https://semopenalex.org/work/W4297667025> ?p ?o ?g. }
Showing items 1 to 77 of
77
with 100 items per page.
- W4297667025 abstract "Time series data is ubiquitous in the real-world problems across various domains including healthcare, social media, and crime surveillance. Detecting anomalies, or irregular and rare events, in time series data, can enable us to find abnormal events in any natural phenomena, which may require special treatment. Moreover, labeled instances of anomaly are hard to get in time series data. On the other hand, time series data, due to its nature, often exhibits localized expansions and compressions in the time dimension which is called warping. These two challenges make it hard to detect anomalies in time series as often such warpings could get detected as anomalies erroneously. Our objective is to build an anomaly detection model that is robust to such warping variations. In this paper, we propose a novel unsupervised time series anomaly detection method, WaRTEm-AD, that operates in two stages. Within the key stage of representation learning, we employ data augmentation through bespoke time series operators which are passed through a twin autoencoder architecture to learn warping-robust representations for time series data. Second, adaptations of state-of-the-art anomaly detection methods are employed on the learnt representations to identify anomalies. We will illustrate that WaRTEm-AD is designed to detect two types of time series anomalies: point and sequence anomalies. We compare WaRTEm-AD with the state-of-the-art baselines and establish the effectiveness of our method both in terms of anomaly detection performance and computational efficiency." @default.
- W4297667025 created "2022-09-30" @default.
- W4297667025 creator A5007508220 @default.
- W4297667025 creator A5025952401 @default.
- W4297667025 creator A5081705192 @default.
- W4297667025 creator A5087638134 @default.
- W4297667025 date "2019-06-12" @default.
- W4297667025 modified "2023-10-17" @default.
- W4297667025 title "Warping Resilient Scalable Anomaly Detection in Time Series" @default.
- W4297667025 doi "https://doi.org/10.48550/arxiv.1906.05205" @default.
- W4297667025 hasPublicationYear "2019" @default.
- W4297667025 type Work @default.
- W4297667025 citedByCount "0" @default.
- W4297667025 crossrefType "posted-content" @default.
- W4297667025 hasAuthorship W4297667025A5007508220 @default.
- W4297667025 hasAuthorship W4297667025A5025952401 @default.
- W4297667025 hasAuthorship W4297667025A5081705192 @default.
- W4297667025 hasAuthorship W4297667025A5087638134 @default.
- W4297667025 hasBestOaLocation W42976670251 @default.
- W4297667025 hasConcept C101738243 @default.
- W4297667025 hasConcept C108583219 @default.
- W4297667025 hasConcept C119857082 @default.
- W4297667025 hasConcept C121332964 @default.
- W4297667025 hasConcept C124101348 @default.
- W4297667025 hasConcept C127313418 @default.
- W4297667025 hasConcept C12997251 @default.
- W4297667025 hasConcept C143724316 @default.
- W4297667025 hasConcept C151406439 @default.
- W4297667025 hasConcept C151730666 @default.
- W4297667025 hasConcept C153180895 @default.
- W4297667025 hasConcept C154945302 @default.
- W4297667025 hasConcept C17744445 @default.
- W4297667025 hasConcept C199539241 @default.
- W4297667025 hasConcept C26873012 @default.
- W4297667025 hasConcept C41008148 @default.
- W4297667025 hasConcept C44210515 @default.
- W4297667025 hasConcept C48044578 @default.
- W4297667025 hasConcept C739882 @default.
- W4297667025 hasConcept C77088390 @default.
- W4297667025 hasConcept C88516994 @default.
- W4297667025 hasConceptScore W4297667025C101738243 @default.
- W4297667025 hasConceptScore W4297667025C108583219 @default.
- W4297667025 hasConceptScore W4297667025C119857082 @default.
- W4297667025 hasConceptScore W4297667025C121332964 @default.
- W4297667025 hasConceptScore W4297667025C124101348 @default.
- W4297667025 hasConceptScore W4297667025C127313418 @default.
- W4297667025 hasConceptScore W4297667025C12997251 @default.
- W4297667025 hasConceptScore W4297667025C143724316 @default.
- W4297667025 hasConceptScore W4297667025C151406439 @default.
- W4297667025 hasConceptScore W4297667025C151730666 @default.
- W4297667025 hasConceptScore W4297667025C153180895 @default.
- W4297667025 hasConceptScore W4297667025C154945302 @default.
- W4297667025 hasConceptScore W4297667025C17744445 @default.
- W4297667025 hasConceptScore W4297667025C199539241 @default.
- W4297667025 hasConceptScore W4297667025C26873012 @default.
- W4297667025 hasConceptScore W4297667025C41008148 @default.
- W4297667025 hasConceptScore W4297667025C44210515 @default.
- W4297667025 hasConceptScore W4297667025C48044578 @default.
- W4297667025 hasConceptScore W4297667025C739882 @default.
- W4297667025 hasConceptScore W4297667025C77088390 @default.
- W4297667025 hasConceptScore W4297667025C88516994 @default.
- W4297667025 hasLocation W42976670251 @default.
- W4297667025 hasOpenAccess W4297667025 @default.
- W4297667025 hasPrimaryLocation W42976670251 @default.
- W4297667025 hasRelatedWork W1987029079 @default.
- W4297667025 hasRelatedWork W2506205276 @default.
- W4297667025 hasRelatedWork W2920254490 @default.
- W4297667025 hasRelatedWork W3044458868 @default.
- W4297667025 hasRelatedWork W3192727092 @default.
- W4297667025 hasRelatedWork W4223945335 @default.
- W4297667025 hasRelatedWork W4296210064 @default.
- W4297667025 hasRelatedWork W4297667025 @default.
- W4297667025 hasRelatedWork W4308482784 @default.
- W4297667025 hasRelatedWork W4313590336 @default.
- W4297667025 isParatext "false" @default.
- W4297667025 isRetracted "false" @default.
- W4297667025 workType "article" @default.