Matches in SemOpenAlex for { <https://semopenalex.org/work/W4297672021> ?p ?o ?g. }
Showing items 1 to 69 of
69
with 100 items per page.
- W4297672021 abstract "Bayesian methods are critical for quantifying the behaviors of systems. They capture our uncertainty about a system's behavior using probability distributions and update this understanding as new information becomes available. Probabilistic predictions that incorporate this uncertainty can then be made to evaluate system performance and make decisions. While Bayesian methods are very useful, they are often computationally intensive. This necessitates the development of more efficient algorithms. Here, we discuss a group of population Markov Chain Monte Carlo (MCMC) methods for Bayesian updating and system reliability assessment that we call Sequential Tempered MCMC (ST-MCMC) algorithms. These algorithms combine 1) a notion of tempering to gradually transform a population of samples from the prior to the posterior through a series of intermediate distributions, 2) importance resampling, and 3) MCMC. They are a form of Sequential Monte Carlo and include algorithms like Transitional Markov Chain Monte Carlo and Subset Simulation. We also introduce a new sampling algorithm called the Rank-One Modified Metropolis Algorithm (ROMMA), which builds upon the Modified Metropolis Algorithm used within Subset Simulation to improve performance in high dimensions. Finally, we formulate a single algorithm to solve combined Bayesian updating and reliability assessment problems to make posterior assessments of system reliability. The algorithms are then illustrated by performing prior and posterior reliability assessment of a water distribution system with unknown leaks and demands." @default.
- W4297672021 created "2022-09-30" @default.
- W4297672021 creator A5023204950 @default.
- W4297672021 creator A5035500922 @default.
- W4297672021 date "2018-04-23" @default.
- W4297672021 modified "2023-10-18" @default.
- W4297672021 title "Bayesian Updating and Uncertainty Quantification using Sequential Tempered MCMC with the Rank-One Modified Metropolis Algorithm" @default.
- W4297672021 doi "https://doi.org/10.48550/arxiv.1804.08738" @default.
- W4297672021 hasPublicationYear "2018" @default.
- W4297672021 type Work @default.
- W4297672021 citedByCount "0" @default.
- W4297672021 crossrefType "posted-content" @default.
- W4297672021 hasAuthorship W4297672021A5023204950 @default.
- W4297672021 hasAuthorship W4297672021A5035500922 @default.
- W4297672021 hasBestOaLocation W42976720211 @default.
- W4297672021 hasConcept C105795698 @default.
- W4297672021 hasConcept C107673813 @default.
- W4297672021 hasConcept C111350023 @default.
- W4297672021 hasConcept C11413529 @default.
- W4297672021 hasConcept C119857082 @default.
- W4297672021 hasConcept C13153151 @default.
- W4297672021 hasConcept C144024400 @default.
- W4297672021 hasConcept C149923435 @default.
- W4297672021 hasConcept C150921843 @default.
- W4297672021 hasConcept C154945302 @default.
- W4297672021 hasConcept C160234255 @default.
- W4297672021 hasConcept C187653413 @default.
- W4297672021 hasConcept C19499675 @default.
- W4297672021 hasConcept C204693719 @default.
- W4297672021 hasConcept C2908647359 @default.
- W4297672021 hasConcept C33923547 @default.
- W4297672021 hasConcept C41008148 @default.
- W4297672021 hasConcept C57830394 @default.
- W4297672021 hasConcept C98763669 @default.
- W4297672021 hasConceptScore W4297672021C105795698 @default.
- W4297672021 hasConceptScore W4297672021C107673813 @default.
- W4297672021 hasConceptScore W4297672021C111350023 @default.
- W4297672021 hasConceptScore W4297672021C11413529 @default.
- W4297672021 hasConceptScore W4297672021C119857082 @default.
- W4297672021 hasConceptScore W4297672021C13153151 @default.
- W4297672021 hasConceptScore W4297672021C144024400 @default.
- W4297672021 hasConceptScore W4297672021C149923435 @default.
- W4297672021 hasConceptScore W4297672021C150921843 @default.
- W4297672021 hasConceptScore W4297672021C154945302 @default.
- W4297672021 hasConceptScore W4297672021C160234255 @default.
- W4297672021 hasConceptScore W4297672021C187653413 @default.
- W4297672021 hasConceptScore W4297672021C19499675 @default.
- W4297672021 hasConceptScore W4297672021C204693719 @default.
- W4297672021 hasConceptScore W4297672021C2908647359 @default.
- W4297672021 hasConceptScore W4297672021C33923547 @default.
- W4297672021 hasConceptScore W4297672021C41008148 @default.
- W4297672021 hasConceptScore W4297672021C57830394 @default.
- W4297672021 hasConceptScore W4297672021C98763669 @default.
- W4297672021 hasLocation W42976720211 @default.
- W4297672021 hasOpenAccess W4297672021 @default.
- W4297672021 hasPrimaryLocation W42976720211 @default.
- W4297672021 hasRelatedWork W1513280753 @default.
- W4297672021 hasRelatedWork W1597455262 @default.
- W4297672021 hasRelatedWork W2037868053 @default.
- W4297672021 hasRelatedWork W2060098566 @default.
- W4297672021 hasRelatedWork W2162457363 @default.
- W4297672021 hasRelatedWork W2790979771 @default.
- W4297672021 hasRelatedWork W3016163002 @default.
- W4297672021 hasRelatedWork W3087071515 @default.
- W4297672021 hasRelatedWork W3098946868 @default.
- W4297672021 hasRelatedWork W4297672021 @default.
- W4297672021 isParatext "false" @default.
- W4297672021 isRetracted "false" @default.
- W4297672021 workType "article" @default.