Matches in SemOpenAlex for { <https://semopenalex.org/work/W4297677051> ?p ?o ?g. }
Showing items 1 to 69 of
69
with 100 items per page.
- W4297677051 abstract "Wavelet neural networks (WNN) have been applied in many fields to solve regression as well as classification problems. After the advent of big data, as data gets generated at a brisk pace, it is imperative to analyze it as soon as it is generated owing to the fact that the nature of the data may change dramatically in short time intervals. This is necessitated by the fact that big data is all pervasive and throws computational challenges for data scientists. Therefore, in this paper, we built an efficient Scalable, Parallelized Wavelet Neural Network (SPWNN) which employs the parallel stochastic gradient algorithm (SGD) algorithm. SPWNN is designed and developed under both static and streaming environments in the horizontal parallelization framework. SPWNN is implemented by using Morlet and Gaussian functions as activation functions. This study is conducted on big datasets like gas sensor data which has more than 4 million samples and medical research data which has more than 10,000 features, which are high dimensional in nature. The experimental analysis indicates that in the static environment, SPWNN with Morlet activation function outperformed SPWNN with Gaussian on the classification datasets. However, in the case of regression, the opposite was observed. In contrast, in the streaming environment i.e., Gaussian outperformed Morlet on the classification and Morlet outperformed Gaussian on the regression datasets. Overall, the proposed SPWNN architecture achieved a speedup of 1.32-1.40." @default.
- W4297677051 created "2022-09-30" @default.
- W4297677051 creator A5044603456 @default.
- W4297677051 creator A5070292560 @default.
- W4297677051 creator A5073505371 @default.
- W4297677051 creator A5076646852 @default.
- W4297677051 date "2022-09-07" @default.
- W4297677051 modified "2023-10-14" @default.
- W4297677051 title "Parallel and Streaming Wavelet Neural Networks for Classification and Regression under Apache Spark" @default.
- W4297677051 doi "https://doi.org/10.48550/arxiv.2209.03056" @default.
- W4297677051 hasPublicationYear "2022" @default.
- W4297677051 type Work @default.
- W4297677051 citedByCount "0" @default.
- W4297677051 crossrefType "posted-content" @default.
- W4297677051 hasAuthorship W4297677051A5044603456 @default.
- W4297677051 hasAuthorship W4297677051A5070292560 @default.
- W4297677051 hasAuthorship W4297677051A5073505371 @default.
- W4297677051 hasAuthorship W4297677051A5076646852 @default.
- W4297677051 hasBestOaLocation W42976770511 @default.
- W4297677051 hasConcept C119857082 @default.
- W4297677051 hasConcept C121332964 @default.
- W4297677051 hasConcept C124101348 @default.
- W4297677051 hasConcept C154945302 @default.
- W4297677051 hasConcept C163716315 @default.
- W4297677051 hasConcept C173608175 @default.
- W4297677051 hasConcept C196216189 @default.
- W4297677051 hasConcept C199360897 @default.
- W4297677051 hasConcept C2778280487 @default.
- W4297677051 hasConcept C2781215313 @default.
- W4297677051 hasConcept C41008148 @default.
- W4297677051 hasConcept C46286280 @default.
- W4297677051 hasConcept C47432892 @default.
- W4297677051 hasConcept C50644808 @default.
- W4297677051 hasConcept C62520636 @default.
- W4297677051 hasConcept C68339613 @default.
- W4297677051 hasConcept C75684735 @default.
- W4297677051 hasConceptScore W4297677051C119857082 @default.
- W4297677051 hasConceptScore W4297677051C121332964 @default.
- W4297677051 hasConceptScore W4297677051C124101348 @default.
- W4297677051 hasConceptScore W4297677051C154945302 @default.
- W4297677051 hasConceptScore W4297677051C163716315 @default.
- W4297677051 hasConceptScore W4297677051C173608175 @default.
- W4297677051 hasConceptScore W4297677051C196216189 @default.
- W4297677051 hasConceptScore W4297677051C199360897 @default.
- W4297677051 hasConceptScore W4297677051C2778280487 @default.
- W4297677051 hasConceptScore W4297677051C2781215313 @default.
- W4297677051 hasConceptScore W4297677051C41008148 @default.
- W4297677051 hasConceptScore W4297677051C46286280 @default.
- W4297677051 hasConceptScore W4297677051C47432892 @default.
- W4297677051 hasConceptScore W4297677051C50644808 @default.
- W4297677051 hasConceptScore W4297677051C62520636 @default.
- W4297677051 hasConceptScore W4297677051C68339613 @default.
- W4297677051 hasConceptScore W4297677051C75684735 @default.
- W4297677051 hasLocation W42976770511 @default.
- W4297677051 hasOpenAccess W4297677051 @default.
- W4297677051 hasPrimaryLocation W42976770511 @default.
- W4297677051 hasRelatedWork W2019547370 @default.
- W4297677051 hasRelatedWork W2047653910 @default.
- W4297677051 hasRelatedWork W2059017668 @default.
- W4297677051 hasRelatedWork W2082439070 @default.
- W4297677051 hasRelatedWork W2356584340 @default.
- W4297677051 hasRelatedWork W2790778417 @default.
- W4297677051 hasRelatedWork W2913734363 @default.
- W4297677051 hasRelatedWork W3004053231 @default.
- W4297677051 hasRelatedWork W3014300295 @default.
- W4297677051 hasRelatedWork W4233648438 @default.
- W4297677051 isParatext "false" @default.
- W4297677051 isRetracted "false" @default.
- W4297677051 workType "article" @default.