Matches in SemOpenAlex for { <https://semopenalex.org/work/W4297680917> ?p ?o ?g. }
Showing items 1 to 75 of
75
with 100 items per page.
- W4297680917 endingPage "5670" @default.
- W4297680917 startingPage "5659" @default.
- W4297680917 abstract "Machine learning techniques have recently been applied in several areas of the exploration and production (E&P) industry. However, it has not been considered a standard solution as many approaches mostly remain at case studies and pilot projects. It could be caused by the lack of knowledge and experience and workforce for implementation. Hence, the application of machine learning in the oil and gas industry has many challenges to overcome. This paper provides several successful and specific solutions to apply Machine Learning techniques in several scenarios, from subsurface to surface, to save operating costs and maximize hydrocarbon production recovery. Furthermore, this paper shares insights on how to identify opportunities and implement Machine Learning solutions." @default.
- W4297680917 created "2022-09-30" @default.
- W4297680917 creator A5009661949 @default.
- W4297680917 creator A5069813593 @default.
- W4297680917 date "2022-01-01" @default.
- W4297680917 modified "2023-09-30" @default.
- W4297680917 title "Machine Learning and Application Cases for Maximizing Values of Asset Development" @default.
- W4297680917 cites W1967647496 @default.
- W4297680917 cites W2060483646 @default.
- W4297680917 cites W2482377998 @default.
- W4297680917 cites W2817624441 @default.
- W4297680917 cites W2845504335 @default.
- W4297680917 cites W2895179101 @default.
- W4297680917 cites W3041743877 @default.
- W4297680917 cites W3136898837 @default.
- W4297680917 cites W3173695213 @default.
- W4297680917 doi "https://doi.org/10.1007/978-981-19-2149-0_516" @default.
- W4297680917 hasPublicationYear "2022" @default.
- W4297680917 type Work @default.
- W4297680917 citedByCount "0" @default.
- W4297680917 crossrefType "book-chapter" @default.
- W4297680917 hasAuthorship W4297680917A5009661949 @default.
- W4297680917 hasAuthorship W4297680917A5069813593 @default.
- W4297680917 hasConcept C110354214 @default.
- W4297680917 hasConcept C112930515 @default.
- W4297680917 hasConcept C117671659 @default.
- W4297680917 hasConcept C119857082 @default.
- W4297680917 hasConcept C127413603 @default.
- W4297680917 hasConcept C139719470 @default.
- W4297680917 hasConcept C144133560 @default.
- W4297680917 hasConcept C154945302 @default.
- W4297680917 hasConcept C162324750 @default.
- W4297680917 hasConcept C2778139618 @default.
- W4297680917 hasConcept C2778348673 @default.
- W4297680917 hasConcept C38652104 @default.
- W4297680917 hasConcept C41008148 @default.
- W4297680917 hasConcept C50522688 @default.
- W4297680917 hasConcept C526740375 @default.
- W4297680917 hasConcept C76178495 @default.
- W4297680917 hasConcept C87717796 @default.
- W4297680917 hasConceptScore W4297680917C110354214 @default.
- W4297680917 hasConceptScore W4297680917C112930515 @default.
- W4297680917 hasConceptScore W4297680917C117671659 @default.
- W4297680917 hasConceptScore W4297680917C119857082 @default.
- W4297680917 hasConceptScore W4297680917C127413603 @default.
- W4297680917 hasConceptScore W4297680917C139719470 @default.
- W4297680917 hasConceptScore W4297680917C144133560 @default.
- W4297680917 hasConceptScore W4297680917C154945302 @default.
- W4297680917 hasConceptScore W4297680917C162324750 @default.
- W4297680917 hasConceptScore W4297680917C2778139618 @default.
- W4297680917 hasConceptScore W4297680917C2778348673 @default.
- W4297680917 hasConceptScore W4297680917C38652104 @default.
- W4297680917 hasConceptScore W4297680917C41008148 @default.
- W4297680917 hasConceptScore W4297680917C50522688 @default.
- W4297680917 hasConceptScore W4297680917C526740375 @default.
- W4297680917 hasConceptScore W4297680917C76178495 @default.
- W4297680917 hasConceptScore W4297680917C87717796 @default.
- W4297680917 hasLocation W42976809171 @default.
- W4297680917 hasOpenAccess W4297680917 @default.
- W4297680917 hasPrimaryLocation W42976809171 @default.
- W4297680917 hasRelatedWork W2006878063 @default.
- W4297680917 hasRelatedWork W2362189156 @default.
- W4297680917 hasRelatedWork W2391949744 @default.
- W4297680917 hasRelatedWork W2600427155 @default.
- W4297680917 hasRelatedWork W2748952813 @default.
- W4297680917 hasRelatedWork W2805876998 @default.
- W4297680917 hasRelatedWork W2899084033 @default.
- W4297680917 hasRelatedWork W2961085424 @default.
- W4297680917 hasRelatedWork W4306674287 @default.
- W4297680917 hasRelatedWork W327984264 @default.
- W4297680917 isParatext "false" @default.
- W4297680917 isRetracted "false" @default.
- W4297680917 workType "book-chapter" @default.